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ABSTRACT

This paper proposes a new simulation-based approach for optimal portfolio
allocation in realistic environments with complex dynamics for the state vari-
ables and large numbers of factors and assets. A first illustration involves a
choice between equity and cash with nonlinear interest rate and market price
of risk dynamics. Intertemporal hedging demands significantly increase the
demand for stocks and exhibit low volatility.We then analyze settings where
stock returns are also predicted by dividend yields and where investors have
wealth-dependent relative risk aversion. Large-scale problems with many
assets, including the Nasdaq, SP500, bonds, and cash, are also examined.

The question of optimal portfolio allocation has been of long-standing interest
for academics and practitioners in finance.While the mean-variance analysis of
Markowitz (1952) is still commonly used among portfolio managers, it has been
well understood, sinceMerton (1971), that long-term investors would prefer port-
folios that include hedging components to protect against fluctuations in their
investment opportunities. Prompted by the seminal papers of Merton (1969,
1971) and Samuelson (1969), studies have explored various aspects of the dynamic
portfolio problem when asset prices follow diffusion processes (e.g., Richard
(1975)). This literature has relied, for the most part, on a dynamic programming
approach to the problem. More recent contributions by Pliska (1986), Karatzas,
Lehoczky, and Shreve (1987), and Cox and Huang (1989) have proposed an alter-
native resolution method based on martingale techniques. In the context of this
approach, an optimal portfolio formula was derived by Ocone and Karatzas
(1991). This expression involves expectations of random variables depending on
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the interest rate (IR) and the market price of risk (MPR) and on unspecified de-
rivatives of these state variables.
While theoretical formulas are available in general contexts, little is known

about portfolio properties and, in particular, about the behavior of the hedging
terms. Even in the context of diffusion models, realistic specifications with sto-
chastic IR andMPR give rise to complex hedging terms that do not have explicit
forms and are difficult to evaluate numerically. As a result, the recent literature
on dynamic asset allocation has devoted attention to state variable specifications
for which closed-form solutions are available (Kim and Omberg (1996), Liu (2001),
Lioui and Poncet (2001),Wachter (2002)), or specifications that are computation-
ally tractable based on dynamic programming techniques (Brennan, Schwartz,
and Lagnado (1997), Brennan (1998), Chacko and Viceira (1999), Brennan and
Xia (2001), Campbell, Rodriguez, and Viceira (2001)), or discrete time models
based on approximated Euler equations (Balduzzi and Lynch (1999), Campbell
and Viceira (1999, 2001), Dammon, Spatt, and Zhang (2001)).1 However, even nu-
merical schemes based on PDEs, which offer the most flexibility, become increas-
ingly difficult to implement when the number of state variables increases.
Approximations of the Euler equations, based on a discretization of the state
space, suffer from the same curse of dimensionality.
The method proposed here is based on a refinement of the Ocone and Karatzas

(1991) formula. It relies on the derivation of explicit expressions for the hedging
terms, involving expectations of random variables that can be simulated. The
computation of portfolio shares can then proceed using any simulation-based ap-
proach.This method is flexible and handles realistic portfolio problems in com-
plete market settings with complex dynamics for the state variables. It permits
large numbers of state variables and assets and accommodates wealth-dependent
relative risk aversions.
The paper provides three main contributions. First, we exploit the diffusion

nature of the state variables processes to derive explicit expressions for the hed-
ging components of the optimal portfolio. Hedging demands are expressed as
conditional expectations of random variables that depend on the derivatives of
the drift and variance of the relevant state variables. These formulas hold for
any structure of the underlying processes and the utility function and reduce
the computation of hedging demands to the computation of expectations, as in
traditional option pricing theory. Furthermore, they enable us to establish new
theoretical results about the hedging behavior. Our approach, which computes
the exact solution of the portfolio problem, must be distinguished from recent
simulation-based attempts that compute approximations of the optimal portfo-
lio. For instance, Cvitanic, Goukasian, and Zapatero (2003) derive an approxima-
tion using the covariation between optimal wealth and the uncertainty shocks
and compute the approximate portfolio by simulation. Section 7 documents the
convergence and efficiency properties of this method and shows that it is domi-
nated. Brandt, Goyal, and Santa-Clara (2001) also propose a simulation approach
to compute an approximation of the optimal portfolio, but in a discrete time

1Kogan and Uppal (2000) approximate continuous time solutions.
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setting.Theycombine series expansions of the value functionwith regressions on
powers of the state variables.
Second, we propose a simple transformation of the underlying state variables,

which eliminates the stochastic volatility coefficients in the state variable pro-
cesses. This removes a source of discretization error in simulations of the state
variables and improves the rate of convergence. The scheme also increases the
speed of convergence of simulated trajectories of hedging terms and of any sta-
tistic (such as confidence intervals) of simulated hedging terms.
Third, we provide new results on the economic properties of optimal portfolios.

For tractability reasons, recent applied studies of dynamic asset allocation have
assumed affine models for the state variables2 and constant relative risk aver-
sion. In practice, it is well known that the interest rate and the market prices of
risk, which are at the core of portfolio choice models, exhibit nonlinearities in
their drift and diffusion functions. An IR specification with a nonlinear drift is,
for instance, supported by the nonparametric analysis of A|« t-Sahalia (1996) and
the estimations performed byAhn and Gao (1999). Similarly, nonlinear patterns
in the variance of the market price of risk, such as asymmetric responses to up-
ward and downward price movements or sudden changes in level, are present in
the data. Constant relative risk aversion produces demand functions that are
proportional to wealth (see Merton (1971)), which does not appear to capture in-
vestors’ behavior. Researchers have long argued that increasing relative risk
aversion seems more plausible (see Arrow (1975)) and that the preservation of a
minimum standard of living is a fundamental concern of individuals. Moreover,
most personal financial planning advice is wealth dependent. To accommodate
these more realistic settings, we examine multivariate nonlinear models of the
IR and MPR in settings with constant relative (CRRA) or hyperbolic absolute
(HARA) risk aversion.
In our benchmark bivariate model, the IR process has nonlinear mean rever-

sion and constant elasticity of variance (CEV).To model theMPR, we introduce a
new class of processes with hyperbolic elasticity of variance, which constitutes a
natural generalization of the CEV class. Our MPR process exhibits nonlinear
mean reversion and hyperbolic elasticity of variance; a version of this model also
allows for an interest rate effect on the drift of the MPR. More elaborate multi-
variate models with stochastic dividend yield (to capture its predictive power on
stock returns) and multiple assets are also examined. In these contexts, we docu-
ment themagnitude andbehavior of the hedging terms aswell as their sensitivity
to exogenous parameters such as risk aversion, investment horizon, and initial
values of the IR and the MPR. All our results are based on a representation of
the optimal portfolio evolving from the Ocone^Karatzas formula.This modified
formula emphasizes the role of risk aversion andwealth in the hedging terms and
sheds further light on the portfolio behavior.
A number of lessons can be drawn from our simulations. Hedging demands are

important for asset allocation and tend to increase the demand for stocks. For

2The nonparametric approaches of Brandt (1999) and A|« t-Sahalia and Brandt (2001) are
notable exceptions.
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long horizons, intertemporal hedging can easily account for over 60 percent of
the stock demand. The IR hedge, which is positive due to negative correlation
between the IR and stock returns, overwhelms the MPR hedge, which tends to
be negative. This is shown for CRRA in our benchmark model calibrated
to the data. The importance of hedging is also documented for HARA utility
functions (u(X)5 (1/(1�R))(X1B)1�R). When marginal utility is finite at zero
(B40), the portfolio displays striking differences when the nonnegativity
constraint on consumption is enforced.We also find that hedging terms change
signs at sufficiently low levels of wealth. These results complement Cox and
Huang (1989), who outlined the importance of the constraint for consumption be-
havior. When the investor is intolerant of wealth shortfalls (Bo0 and
u(X)5 �N for Xo�B), hedging becomes even more relevant for the optimal
allocation. In the limit, as wealth approaches the present value of the floor,
�B, the portfolio is entirely motivated by hedging considerations, even for loga-
rithmic utility.
Hedging components exhibit low volatility relative to mean-variance (MV)

demands. The IR hedge has the lowest volatility, followed by the MPR
hedge and the MV demands. Unlike some earlier studies (e.g., Brennan et al.
(1997)), reasonable interior solutions are obtained and portfolio shares are stable
in market timing experiments.When the dividend yield is added as a predictor to
the IR and theMPR in the drift of theMPR process, its effect on stock demand is
marginal. This can be contrasted with Barberis (2000), who finds strong effects
of the dividend yield on asset allocation when the benchmark model has i.i.d.
returns.
Nonlinearities in the IR-MPR process are not only present in the data, but they

also modify the optimal portfolio in a significant manner. Allocation rules based
on amean-reverting square-root IR process and a mean-reverting GaussianMPR
process, calibrated to the data, are biased (biases in excess of 100 percent are
recorded in some cases).The size of this bias increases with the investment hor-
izon and the deviation from unit risk aversion. Since nonlinearities reduce the
fraction of wealth in the stock, theyhave a taming effect on the optimal portfolio.
This is similar to the effect of parameter uncertainty documented in Barberis
(2000).
We also compute and study the optimal portfolio in settings with large num-

bers of state variables and assets. Simulations of a model with 11 assets and 20
state variables with nonlinear dynamics confirm earlier results: Mutual funds
that provide good hedges against IR risk will give rise to particularly large hed-
ging demands. Guidelines for investing in the ‘‘New Economy’’are also provided.
When four asset classes, given by the Nasdaq, S&P500, long-term bonds, and
cash, are selected, we find it optimal to short long-term bonds, invest in the
S&P500 and Nasdaq, and maintain a positive cash balance. Moreover, we find
that holding more stocks for the long run may not be optimal! As the horizon in-
creases, itmaybecome advantageous to reduce the total allocation to the S&P500
and the Nasdaq.
A detailed numerical analysis shows the convergence and efficiency properties

of ourMonte Carlo estimator, based onMalliavin derivatives in comparisonwith
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PDE methods (as in Brennan et al. (1997)) and other Monte Carlo estimators
(Cvitanic et al. (2003)). An experiment shows that our method fares best in terms
of root mean square relative errors and maximum absolute errors.
The next section states the portfolio problem. Section II provides the optimal

portfolio formula and discusses its structure. Section III presents the change of
variables and discusses implementation issues. Section IV introduces a bench-
mark model and examines the portfolio properties with CRRA.The HARA case
and multiasset models are studied in SectionsVandVI, respectively. Numerical
methods are compared in SectionVII. Proofs are in Appendix A; Appendix B re-
ports asymptotic laws of estimators; Appendix C describes the calibration of the
models; Appendix D contains a nontechnical introduction to Malliavin calculus
for finance.

I. The Portfolio Choice Problem

We consider a portfolio choice problem in a complete market with d state vari-
ablesYjt, j51,y, d, and d sources of Brownian uncertaintyWit, i51,y, d. State
variables follow the vector diffusion process3

dYt ¼ mY ðt; YtÞdtþ sY ðt; YtÞdWt: ð1Þ

The investor allocates his wealth between d risky securities and one riskless as-
set (a money market account) with instantaneous riskless rate of return rt5 r(t,
Yt).The security prices Si, i51,y, d, satisfy the stochastic differential equations

dSit ¼ Sit½ðmiðt; YtÞ � diðt; YtÞÞdtþ siðt; YtÞdWt�; 1 	 i 	 d; ð2Þ

where mi is the expected return, di the dividend rate, and si the vector of volatility
coefficients of security i. Let s denote the d
d-dimensional volatility matrix
whose rows are si, i51,y, d.We assume that s is invertible and that the market
price of risk

yt ¼ yðt; YtÞ � sðt; YtÞ�1ðmðt; YtÞ � rðt; YtÞ1Þ; ð3Þ

where 1 is the unit vector, is continuously differentiable, and satisfies the Novi-
kov condition Eexp 1

2

RT
0 y0tyt dt

� �
o1. Under this condition, the state price den-

sity is

xt � exp �
Z t

0
rs ds�

Z t

0
y0s dWs �

1
2

Z t

0
y0sys ds

� �
: ð4Þ

Relative state prices are written xt;v � xv=xt ¼ expð�
R v
t ðrs þ 1

2 y
0
sysÞds�R v

t ys dWsÞ.
Suppose that an investor seeks to maximize the expected utility of terminal

wealth by selecting a dynamic portfolio policy composed of the d risky assets

3We assume that the coefficients of (1) satisfy Growth and Lipschitz conditions. Note also
that the state variables are joint solutions of the system (1), that is, state variables can influ-
ence each other.
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and the riskless asset

max
p
UðXT Þ � E½uðXT Þ� s:t: ð5Þ

dXt ¼ rtXtdtþXtp0t½ðmt � rt1Þdtþ stdWt�; X0 ¼ x
Xt � 0 for all t 2 ½0; T �:

�
ð6Þ

Here Xt represents the investor’s wealth at date t, x is initial wealth, and pt the
proportions invested in the risky assets at date t.The nonnegativity constraint is
a typical no-bankruptcy condition.The utility function is strictly increasing and
concave with limits limx-Nu0(x)5 0 and limx-0u0(x)rN. Since we allow for fi-
nite marginal utility of consumption at zero, utility specifications such as those
with hyperbolic absolute risk aversion are permitted.

II. The Optimal Portfolio:The Hedging Behavior

This portfolio problem has been resolved by using a martingale approach that
identifies optimal terminal wealth explicitly (Karatzas et al. (1987), Cox and
Huang (1989)). An application of the Clark^Ocone formula then gives the finan-
cing portfolio. This approach, adopted by Ocone and Karatzas (1991), expresses
the portfolio in the form of conditional expectations of random variables. Given
the generality of their model in which the drift and the volatility of returns are
not modeled explicitly, these random variables are left unspecified. In this sec-
tion, we show that the diffusion nature of the financial market can be used to
derive explicit expressions for these random terms, and hence for the portfolio
shares.

A. The Optimal Portfolio Policy

Our first result identifies the general structure of the optimal portfolio and of
its hedging components. Let RðxÞ � �u00ðxÞx=u0ðxÞ be the (atemporal) Arrow^
Pratt measure of relative risk aversion.With this notation, we have the following
theorem.

THEOREM 1:The optimal portfolio shares are given by

pt ¼ ðsðt; YtÞ0Þ�1
1

RðXtÞ
yðt; YtÞcðt; Xt; YtÞ � aðt; Xt; YtÞ � bðt; Xt; YtÞ

� �
ð7Þ

where

aðt; Xt; YtÞ0 � Et xt;T
XT
Xt

1�RðXT Þ�1
� �

1XT40
Z T

t
Dtrs ds

� �
ð8Þ

bðt; Xt; YtÞ0 � Et xt;T
XT
Xt

1�RðXTÞ�1
� �

1XT40
Z T

t
ðdWs þ ys dsÞ0Dtys

� �
ð9Þ
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cðt; Xt; YtÞ � Et xt;T
XT
Xt

RðXtÞ
RðXT Þ

1XT40

� �
: ð10Þ

In these expressions optimal wealth equals Xt5Et[xt, TI(yxT)
1], where I( � ) is the in-

verse marginal utility function, I( � )15max{I( � ), 0}, and y solves x5E[xTI(yxT)
1].

The symbol 1XT40 is the indicator of the event {XT40}. The random variables Dtrs
and Dtys in (8) and (9) are Malliavin derivatives.4 They are given by Dty

0
s ¼

@2yðs; YsÞ0DtYs and Dtrs ¼ @2rðs; YsÞDtYs, where DtYs ¼ ðD1tYs; . . . ;DdtYsÞ solves
the linear stochastic differential equation

dðDktYsÞ ¼ @2mY ðs; YsÞDktYsdsþ
Xd
j¼1

@2sY�j ðs; YsÞdWjs

 !
DktYs; ð11Þ

subject to the boundary condition lims!tDktYs ¼ sY�kðt; YtÞ. In (11), sY�j is the j
th

column of the matrix sYand @2sY�j ðs;YsÞ is the gradient with respect toYs of sY�j ðs;YsÞ,
j51,y d.5

The contribution of Theorem 1, relative to Ocone and Karatzas (1991), is to show
that the Malliavin derivatives of the state variables satisfy diffusion processes.
This result is especially important for the numerical implementation of the for-
mula. Indeed, the diffusion evolution (11) implies that simulation methods can be
used to calculate the portfolio shares.
An important ingredient in the portfolio formula is the Malliavin derivatives

ðD1tYs; . . . ;DdtYsÞ of the state variables.The random variable DktYs captures the
impact of an innovation in the Brownian motionWk at time t on the state variable
Ys at time s. In essence, this derivative measures the persistence of a shock in
the state variable. It is similar to an impulse response function that quantifies
the sensitivity of a variableYs to a past uncertainty shock at time t.
The first component of the portfolio (7) is a mean-variance term, while the next

two are intertemporal hedging terms (seeMerton (1971)).6 In this general setting,
the mean-variance demand varies with optimal wealth, since relative risk aver-
sion depends on wealth. Hedging arises as the investor seeks insurance against
fluctuations in the IR (second term in (7)) and in theMPR (third term in (7)).The
interpretation of the second term follows from the presence of the Malliavin de-
rivative Dtrs. As indicated above, this derivative captures the effect of shocks at
t on the value of the interest rate rs at the future date s. It measures the IR’s

4 The Malliavin derivative is a generalized notion of derivative that extends the usual con-
cept to path-dependent functions. Just as the ordinary derivative measures the local change of
a function for a small change in the underlying variable, the Malliavin derivative measures
the change in a path-dependent function implied by a small change in the path of the under-
lying Brownian motion. See Appendix D for a short introduction to Malliavin calculus.
5We assume that the value function associated with (5) ^ (6) is finite,V(x)oN, and that

xTIðyxT Þ 2 D1;2, where D1; 2 is the domain of the Malliavin derivative (see Nualart (1995) for
complete definitions).
6 The optimal portfolio formula extends to the case of intermediate consumption. It also

extends to infinite horizon provided that the Novikov condition is satisfied.
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sensitivity to the underlying risk factors, that is, the Brownian motionsWi. Simi-
larly, the third term containingDtys is anMPR hedge. It is present whenever the
MPRs are sensitive toWi.When (r, y) are constant or deterministic, these deriva-
tives are null and the hedging terms disappear.When the opportunity set is sto-
chastic, (r, y) depend onY and become sensitive to past innovations in the state
variables.The Malliavin derivatives Dtrs;Dtys then differ from zero and hedging
matters for the optimal allocation.
When relative risk aversion is constant, the optimal portfolio is given by (7),

where c(t, Xt,Yt)5 1 and where the functions a( � ) and b( � ) are independent of
wealth and equal to

aðt; YtÞ0 � rEt
xrt;T

Et½xrt;T �

Z T

t
Dtrs ds

" #
ð12Þ

bðt; YtÞ0 � rEt
xrt;T

Et xrt;T
h i Z T

t
ðdWs þ ys dsÞ0Dtys

2
4

3
5; ð13Þ

with r � 1� 1=R constant.These expressions are obtained by using the relation
between optimalwealth and state prices towrite a, b in terms of the relative state
price density xt,T.These formulas, which are a restatement of (4.21) in Ocone and
Karatzas (1991), show that, with CRRA, the functions a, b are independent of
wealth.They will be used in some of our numerical computations.

B. The Intertemporal Hedging Behavior

Let us now focus on the hedging behavior of the investor. First, note that an
individual with logarithmic utility (R(Xt)5 1) does not hedge. The signs of the
hedging termswill otherwise depend on the signs of the conditional expectations
a(t,Xt,Yt) and b(t,Xt,Yt). For the IR hedge, simple sufficient conditions ensure an
unambiguous behavior.

PROPOSITION 1: Fix tA[0,T]. Suppose that (i) ðsðt; YtÞ0Þ�1ðDtrsÞ0 	 0 forall sZt, (P-a.s)
and that (ii) R(XT)Z1 (P-a.s).Then, intertemporal hedging of interest rate risk raises
the demand for stocks (i.e., the IR hedge is nonnegative). If (i) and (ii) hold for all
tA[0,T], the IR hedge boosts the proportion of wealth invested in stocks at all times.

These two conditions support the intuitive notion that individuals that are more
risk averse than a log investor (R(XT)Z1) will increase their demand for the mar-
ket portfoliowhen the IR covaries negatively with the market return (single risky
asset model) in order to hedge IR risk. The first condition holds in a variety of
special cases that are of interest for empirical or theoretical reasons. For in-
stance, it holds if the dynamics of the state variables are independent of each
other (i.e. mYj(t,Yjt) and s

Yj(t,Yjt) do not depend onYi, iaj) and

ðsðt; YtÞ0Þ�1 @2rðt; YtÞsY ðt; YtÞ
� �0	 0: ð14Þ
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In the single risky asset case, this boils down to negative correlation between the
IR and the risky asset price, which is empirically verified if the risky asset is in-
terpreted as the S&P500 index. The second condition is stated for models in
which relative risk aversion varies with optimal wealth. As long as an investor
displays more risk aversion than a myopic investor, for all possible realizations
of optimal terminal wealth, the condition will hold.
In the next section, we explain how to obtain quantitative estimates of the op-

timal portfolio shares and of the hedging terms using a Monte Carlo procedure
based on Malliavin derivatives.

III. Computation of Portfolios and HedgingTerms

We first outline the numerical procedure employed to implement the portfolio
formula. We then present an alternative procedure based on a change of
variables and document the benefits of this modified approach in a numerical
experiment.

A. AMonte Carlo Portfolio Estimator

To implement the portfolio formula (7), we need to compute the functions a( � ),
b( � ), and c( � ), which are conditional expectations of randomvariables depending
on the paths of the state variablesYs and their Malliavin derivatives DtYs. An ex-
pansion of the state space enables us to treat these random variables as diffusion
processes that can be simulated along with ðYs; DtYsÞ.
For illustration purposes, we focus on the formulas (12) and (13) for CRRA.The

randomvariables in the hedging terms form a joint system (Ys,DtYs, xt,s,Hr
t; s,H

y
t; s),

where Hr
t; s �

R s
t Dtrvdv and Hy

t; s �
R s
t ðdWv þ yvdvÞ0Dtyv. A standard application

of Ito’s lemma gives

dxt; s ¼ �xt; s rðs; YsÞdsþ yðs; YsÞ0dWs
� �

ð15Þ

dHr
t; s ¼ @2rðs; YsÞDtYsds ð16Þ

dHy
t; s ¼ dWs þ yðs; YsÞdsð Þ0@2yðs; YsÞDtYs; ð17Þ

where ðYs; DtYsÞ solve (1) and (11).
For implementation purposes, M trajectories of the solutions of these equa-

tions are simulated simultaneously.This can be performed using a standard Eu-
ler scheme that discretizes the time interval in N points.The result is a set ofM
estimates (YN ; i

s , DN ; i
t Ys, xN ; i

t; s , H
r;N; i
t; s , Hy;N; i

t; s ), one per trajectory, of the random
variables in the hedges, which can be used to construct M estimates,
ðxN; i
t; s Þ

rHr;N; i
t; s and ðxN; i

t; s Þ
rHy;N ; i

t; s , of xrt; sHr
t; s and xrt; sHy

t; s. Averaging over these M
quantities provides estimates of the functions a( � ) and b( � ) in the hedges

âaðt; YtÞ0 ¼
PM

i¼1 ðx
N; i
t;T Þ

rHr;N; i
t;TPM

i¼1 ðx
N; i
t;T Þ

r and b̂bðt; YtÞ0 ¼
PM

i¼1 ðx
N; i
t;T Þ

rHy;N ; i
t;TPM

i¼1 ðx
N; i
t;T Þ

r : ð18Þ
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The precision of these estimators depends on the number of Monte Carlo repli-
cationsMand the number of time discretization pointsN. As shown inDetemple,
Garcia, and Rindisbacher (DGR) (2001), convergence to the true values is at the
rate 1=

ffiffiffiffiffiffi
M

p
as long as the ratio

ffiffiffiffiffiffi
M

p
=N is held constant. For a single Monte Carlo

replication, the Euler scheme converges weakly at rate 1=
ffiffiffiffiffi
N

p
for diffusion pro-

cesses.7,8

Adrawbackof this approach is that the processes tobe simulated have stochas-
tic components depending on the state variables. As shown in DGR (2001), the
presence of these terms slows down the convergence of numerical estimates to
their true value. In turn, this increases the demands placed on the computational
procedure in order to achieve a given level of accuracy. In the next section, we
propose a simple reformulation of the model, which simplifies (or eliminates)
the stochastic terms in the simulated processes and, therefore, improves the con-
vergence speed to the true values.

B. AVariance StabilizingTransformation for the HedgingTerms

The key to this reformulation is a change of variables that normalizes the vola-
tility of a process to a constant.9 Suppose that a state variableYsatisfies the one-
dimensional version of (1), whereW is a single Brownian motion. Following Doss
(1977), we introduce a new state variable Zt5F(t, Yt), where the function F :
½0; T �
R7!R is selected so that @2F51/sY. Using Ito’s lemma shows that Z satis-
fies (see Appendix A for details)

dZt ¼ mðt; ZtÞdtþ dWt; ð19Þ

where mðt; ZÞ � m=s� 1
2 @2sþ @1F

� �
ðt; YÞ withY5F�1(t, Z). Since the equation

has unit variance, there is no need to approximate the volatility of the process,
and this will improve the convergence properties of the simulation scheme.
Moreover, taking the Malliavin derivative on each side gives

dDtZs ¼ @2mðs; ZsÞDtZsds; subject to DtZt ¼ 1: ð20Þ

This linear equation forDtZs does not have a stochastic part and is therefore easy
to simulate. Finally, since there is a one-to-one correspondence between Z andY,
we can express the portfolio formulas entirely in terms of the pair ðZs; DtZsÞ.10
This is accomplished as follows in Proposition 2.

PROPOSITION 2: Suppose that (i) the drift mY is continuously differentiable in
(t,Y), (ii) the volatility sY is twice continuously differentiable in (t,Y), and (iii) mY(t ,0)
and sY(t, 0) are bounded for all tA[0, T]. Then, for all trs, we obtain

7A sequence of random variables ZN converges weakly to Z at the rate 1=
ffiffiffiffiffi
N

p
ifffiffiffiffiffi

N
p

ðZN � ZÞ ) UZ 6¼ 0, where convergence is in probability and UZ is the error. See Appen-
dix B for asymptotic laws of state variables estimators and DGR (2001) for further details.
8 See Kurtz and Protter (1991).
9Doss (1977) used the transformation to show that an SDE can be solved pathwise.
10An extension of these results to multiple state variables is available from the authors.

The Journal of Finance410



DtYs ¼ sY ðs; YsÞDtZs with

DtZs ¼ exp
Z s

t
@2mðt; ZvÞdv

� �
: ð21Þ

Proposition 2 shows that ðYs; DtYsÞ can be written in terms of ðZs; DtZsÞ. Since
(21) depends only on Riemann^Stieltjes integrals, of first and second derivatives
of the coefficients ofY, stochastic integrals have been eliminated.With this‘‘var-
iance-stabilizing’’ transformation, the numerical calculation of the random vari-
able DtYs is of the same complexity as the numerical solution of an ODE. The
result is a faster convergence speed equal to 1/N, which is due to the absence of
a stochastic integral in the ODE.
Implementation can now proceed as in Section III.A.The only modification is

that we simulate the pair ðZs; DtZsÞ to get approximate trajectories
ðZN ; i

s ; DN; i
t ZsÞ and use the inverse function F�1ðs; ZsÞ and Proposition 2 to get

estimates YN; i
s ¼ F�1ðs; ZN; i

s Þ of the original state variables and ðDN ; i
t Ys; xN ; i

t; s ;
Hr;N; i
t; s ; Hy;N ; i

t; s Þ of the random variables in the hedges.

C. Simulation Results

We now illustrate the difference in performance between the approaches with
andwithout transformation, for the approximation ofMalliavin derivatives. Sup-
pose that we compute the derivative D0rT , using each of the two methods. Abso-
lute computational errors are estimated for different discretizations N of the
time interval [0,T] by the strong criterion

êeðN ;MÞ ¼ ÊEM DN
0 rT �D0rT

�� �� ¼ 1
M

XM
i¼1

DN ; i
0 rT �Di

0rT
��� ���; ð22Þ

whereD0rT is the true value of the derivative andDN
0 rT its approximation, based

on N discretization points using M independent replications.We also compute
the respective errors with and without transformation for the state variable rT.
Since the computation of the statistic êeðN ;MÞ requires the true distribution of
the Malliavin derivative, we assume that the IR follows a special case of the gen-
eral mean reverting process withhyperbolic elasticity of variance introduced in the
next section (see (23) with gr ¼ 1

2), with parameters T51, kr5 0.004, �rr ¼ 0:06,
sr5 0.0309839, and r05 0.06.11 To calculate the expectation above, we take 20
batches of 1,000 simulations each. For each batch, an absolute error is estimated.

11Since sr ¼ 2
ffiffiffiffiffiffiffi
kr�rr

p
, the IR is the square of an Ornstein^Uhlenbeck process Yt ¼

ffiffiffiffi
rt

p
. The

true value can then be calculated by using the exact simulation of the transformed state vari-
ables

YtþD ¼ YteaD þ bðsreaD
ffiffiffiffi
D

p
ðWtþD �WtÞ þ

ffiffiffiffiffiffiffiffiffi
js22j

p
ZÞ;

where Z is a Gaussian variate independent of W, a ¼ � kr
2 , b ¼ sr=2; D ¼ T=N, and

s22 ¼ e2aDð1=2a� DÞ þ 2ðD� 1=aÞ þ 3=2a. This choice of coefficients ensures thatY has the cor-
rect variance and covariance with the increment of the Brownian motionWt1D�Wt.
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Estimated absolute errors are then averaged over the batches.Table I reports the
results. Columns 2 and 4 show that the speed of convergence of the Euler scheme
is roughly of order 1=

ffiffiffiffiffi
N

p
. Columns 3 and 5 illustrate the increase in convergence

speed to 1/Nwhen the transformation is used.
This numerical example illustrates the theoretical result (seeAppendix B) and

confirms the improvement in the speed of convergence when the transformation
is applied.The gain is of primary importance in exercises involving the simula-
tion of hedging terms and of optimal portfolios over time, such as market timing
experiments.12

IV. A Benchmark Model with Nonlinear Coefficients

This section both formulates a new model rich enough to capture salient non-
linear features of the data and examines the properties of optimal portfolios.

A. TheModel: NonlinearMean Reversion and Elasticity ofVariance

The evolutionof the investment opportunity set is described by the pair of state
variables (r, y) which satisfy13

drt ¼ krð�rr� rtÞ 1þ frð�rr� rtÞ
2Zr

� �
dt� srr

gr
t dWt; r0 given ð23Þ

Table I
Comparison of the Speeds of Convergence of the Discretization Schemes

When the IR follows a MRSR Process
This table compares the mean absolute errors of the Euler discretization scheme (Euler) and of
the discretization scheme based on the variance stabilizing transformation (Euler-Transform)
as the number of discretization points (N) increases.The errors are reported for the level of the
interest rate (IR) r and of the Malliavin derivative Dr. Errors are computed with respect to the
true distributions of r and Dr, which are known for the mean reverting square root (MRSR)
process chosen.The mean is computed over 20 batches of 1,000 simulations each.

N r Dr

Euler Euler-Transform Euler Euler-Transform

2 0.000115598 5.49255e-06 5.81463e-07 3.47457e-07
4 0.000111128 3.37985e-06 3.58341e-07 2.13681e-07
8 8.74541e-05 1.82631e-06 2.33208e-07 1.15422e-07
16 6.50156e-05 9.41716e-07 1.6312e-07 5.9616e-08
32 4.66084e-05 4.7979e-07 1.16983e-07 3.03396e-08
64 3.336e-05 2.40698e-07 8.29213e-08 1.52396e-08
128 2.3761e-05 1.20386e-07 5.97503e-08 7.63041e-09
256 1.68824e-05 5.83759e-08 4.18739e-08 3.69586e-09
512 1.19618e-05 2.53747e-08 3.00371e-08 1.60477e-09

12When the conditioning state variables are known, estimates of conditional expectations
based on the two schemes, with and without transformation, converge at the same speed (see
DGR (2001)).
13 This is equivalent to a model with two state variablesY5 (Y1,Y2) in which the equations

(rt5 r(t,Y1), yt5 y (t,Y2)) can be inverted and the state variables expressed asYt5 (f1(rt), f2(yt)).
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dyt ¼ kyð�yy� ytÞ þ mryðrt; ytÞ
� �

dtþ syðytÞdWt; y0 given; ð24Þ

where

mryðrt; ytÞ � drð�rr� rtÞðyl þ ytÞ 1� yl þ yt
yl þ yu

� �� �
ð25Þ

syðytÞ ¼ syðyl þ ytÞg1y 1� yl þ yt
yl þ yu

� �1�g1y
 !g2y

: ð26Þ

The coefficients (kr,�rr,fr, Zr, sr, gr, ky, �yy, Zy, sy, yl, yu, g1y, g2y) are constants, (kr,�rr, ky,
yl, yu) are positive, and �yy 2 ð�yl; yuÞ.The Brownian motionW is unidimensional.
The IR process (23) is mean reverting with constant elasticity of variance

(NMRCEV) given by � 2gr. It also exhibits nonlinearities in the speed of mean
reversion that are captured by the function frð�rr� rtÞ

2Zr .This specification, with
nonlinear drift and volatility, is motivated by the nonparametric analysis of Ait-
Sahalia (1996). IR processes of the form (23) but with a linear driftFthat is, con-
stant speed of mean reversion (fr5 0)Fwere used in another context in Chan et
al. (1992); the Cox, Ingersoll, and Ross (1985) model is a particular member of this
class with square-root volatility (fr5 0, gr5 0.5). IR models with quadratic
driftFthat is, linear speed of mean reversion (fra0 and Zr ¼ 1

2)Fwere intro-
duced by Ahn and Gao (1999). More general models with fra0 and Zr 6¼ 1

2 have
yet to be explored.
The MPR process exhibits mean reversion and has an elasticity of variance

given by14

eðxÞ ¼ �2 x
yl þ x

g1y � g2yð1� g1yÞ
ylþx
ylþyu

� �1�g1y

1� ylþx
ylþyu

� �1�g1y

2
64

3
75: ð27Þ

The left panel of Figure 1 shows that the elasticity of variance is hyperbolic in the
neighborhood of the points � yl and yu.This reflects the convergence of the vola-
tility to zero as y approaches � yl and yu. Typical volatility patterns are illu-
strated in the right panel.The volatility function is concave with a maximum at
(g1y=ðg1y þ g2yð1� g1yÞÞÞ1=ð1�g1yÞ.The parameters g1y, g2y control the degree of skew-
ness toward the left or right.The function mryðrt; ytÞ in the drift of the MPR cap-
tures an interest rate dependence (empiricallya good predictor of theMPR).This
formulation ensures that the MPR stays between the two reflecting bounds � yl
and yu at all times. In viewof these properties, the process is said to exhibit mean
reversion with hyperbolic elasticity of variance and interest rate dependence in
the drift (MRHEVID). CEV processes, introduced by Cox and Ross (1976) for op-
tion pricing, are a subcase of our model for the MPR obtained by setting

14 The elasticity of variance, e�� (@v(x)/@x)/(v(x)/x), measures the relative change in the var-
iance v(x)5s2(x). The elasticity of variance is said to be hyperbolic when e ’ kð1þmxÞ�n with
k, m and n40 constants.
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yl5 g2y5 0. General specifications with hyperbolic absolute elasticity of variance
(yla0 and g2ya0) are new.
The bivariate specification (23) and (24) for the IR and the MPR is new in the

literature.While modeling directly the two processes of interest, our structure
captures important nonlinearities in the mean and volatility of these variables,
which are present in the data.This general specification will enable us to assess
the importance of those nonlinearities for portfolio decisions, a question that has
not yet been explored.
The transition from the model with state variablesY to the model (23) and (24)

with state variables (r, y) is immediate. Proposition 2 applies, substituting the
relevant expressions for the derivatives of the drift and volatility in (21). These
derivatives are given in Appendix A.

B. Economic Properties of Optimal Portfolios

We implement our procedure for the benchmarkmodelwith CRRAand a single
risky stock with constant volatility. Details of the calibration and parameter va-
lues are in Appendix C. Initial values are r05 0.06 and y05 0.10, while the volati-
lity of the stock is set at its historical average 0.2. Through most of the paper
simulations, we use a three-day increment and 50,000 paths with variance reduc-
tion by antithetic variables (M5 25,000, h51/100).

B.1. Optimal Portfolios and Hedging Components

Figure 2 (see alsoTable II) illustrates the behavior of the optimal portfolio and
its components relative to the risk aversion and the investment horizon. Risk
aversion varies from 0.5 to 5; the horizon from 1to 10 years. As expected, the frac-
tion of wealth in the stock is a decreasing (increasing) function of risk aversion
(the horizon). The hedges, however, display very different behavior. The MPR
hedge is mildly humped, decreasing-increasing, relative to risk aversion, while
the IR hedge is increasing in that variable. Both hedges increase in absolute

Figure1.The hyperbolic elasticity of variance (HEV) process. Elasticity of variance
(left panel), volatility function (right panel). Parameters: yl5 0.3, yu5 0.7, g1y5 g2y5 0.5.
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value as the horizon increases. As noted before, hedges change signs as risk aver-
sion exceeds or falls short of 1, illustrating the knife-edge behavior of logarithmic
utility. For investors that are more risk averse than the Bernoulli investor, the
negative values of the MPR hedge stem from the positive correlation between
the stock return and the MPR. The additional risk is hedged by reducing the
stock demand. Similarly, the IR hedge tends to boost stock demand, since it cov-
aries negatively with the stock return. Note that the combination of the two
hedges tends to be positive: hedging increases stock holdings relative to a pure
mean-variance investor. In fact, the positive net effect increases with the horizon,
when risk aversion exceeds 1.This dominance of the IR hedge reflects the stron-
ger persistence of IR shocks (slower mean reversion).
Figure 3 displays the behavior relative to the levels of the IR andMPR for a risk

aversion of 3 and an investment horizon of five years. Note that the fraction in-
vested in the stock is an increasing functionof theMPRand is almost insensitive
to the IR. As y0 increases, the IR hedge stays flat (top left panel), while the MPR

Figure 2. Effects of investment horizon and risk aversion on total stock demand
and hedging demands. Interest rate hedging (IRH) demand (top left), market price of
risk hedging (MPRH) demand (top right), total hedging demand (bottom left), total de-
mand (bottom right).
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hedge is convex (top right panel).These effects, however, are of second order re-
lative to the increase in themean-variance component of the stock demand.When
r0 increases, the IR hedge becomes more positive, while the MPR hedge exhibits
little variation. Combining these two effects increases total hedging and stock
demands. For typical values of theMPR (between 0 and 40 percent) andmoderate
IR levels (in excess of two percent), the positive IRH overwhelms the negative
MPRH and the total hedging demand is positive.

B.2. MarketTiming Strategies:Volatility and Lifecycle Effects

To assess the importance and stability over time of the hedging demands, we
perform two market timing experiments. The first consists of drawing trajec-
tories of the underlying state variables and computing the portfolio components
along these trajectories.The second experiment simulates the optimal portfolio
for very long horizons using actual market data.
Results for the first experiment are reported in Figure 4. Atypical trajectoryof

the pair (r, y) is drawn in the top panels.The IR varies between 5.4 percent and 6.3
percent; the MPR takes values between 0.02 and 0.20.The bottom left panel illus-
trates the stock demand and the MVcomponent behaviors for an investor with
risk aversion of 4 and a fixed horizon of five years. For the trajectory drawn, the
proportion invested in the stock evolves between four percent and 28 percent.
Close inspection of the graph, however, shows that changes superior to 20 per-
cent in the portfolio share are usually spread over periods of six months or more.

Table II
Shares of the Portfolio in the Stock and Hedging Components

This table reports the optimal share of the portfolio invested in the stock (p), the interest rate
hedge (IRH), and the market price of risk hedge (MPRH) for different risk aversions (R) and
horizons (T). Computations are performed in the bivariate benchmark model with IR and
MPR state variables and two sources of uncertainty.The IR process is mean reverting with con-
stant elasticityof variance and exhibits nonlinearities in the speed of mean reversion.TheMPR
process exhibits mean reversion with hyperbolic elasticity of variance and interest rate depen-
dence in the drift.The values of the parameters for the processes are given in Appendix C.

R T

1 2 3 4 5 10

0.5 p 1.0398 1.0489 1.0440 1.0354 1.0237 0.9627
IRH � 0.0196 � 0.0388 � 0.0577 � 0.0763 � 0.0946 � 0.1819
MPRH 0.0594 0.0876 0.1017 0.1117 0.1184 0.14469

1 p 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
IRH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MPRH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 p 0.2529 0.2594 0.2670 0.2754 0.2837 0.3236
IRH 0.0098 0.0195 0.0292 0.0387 0.0481 0.0939
MPRH � 0.0069 � 0.0101 � 0.0121 � 0.0133 � 0.0144 � 0.0202

4 p 0.1343 0.1462 0.1590 0.1715 0.1845 0.2445
IRH 0.0147 0.0293 0.0438 0.0582 0.0724 0.1413
MPRH � 0.0054 � 0.0081 � 0.0099 � 0.0117 � 0.0129 � 0.0218
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There are also long stretches of time, in excess of a year, over which the stock
share varies within a 10 percent interval.
The bottom right panel, which shows the respective contributions of the IR

hedge, the MPR hedge and the sum of the two hedges, sheds further light on this
issue. First note that the IR- hedge is remarkably stable over time. It experiences
very small fluctuations and decreases slowly toward zero due to the maturity ef-
fect of the fixed horizon; it also remains positive throughout the period.TheMPR
hedge is negative and exhibits stronger volatility, which is not surprising since it
is sensitive to the MPR level, which is more volatile.Within intervals of a year
though, its fluctuations rarely exceed 10 percent. Again a trend toward zero is
observed due to the fixed horizon. Both hedges work in opposite directions and
partly offset each other. The net hedging correction is about 5.5 percent at the
beginning of the investment horizon, thus boosting the stock demand. It then
slowly converges toward zero while remaining positive.The net hedging correc-
tion inherits the stability of its components: its fluctuations rarely exceeds two

Figure 3. Effects of r0 (initial level of interest rate) and h0 (initial level of market
price of risk) on hedging demands and total demand for stocks when r0A[0, 10 per-
cent] and h0A[� 0.2, 0.6].
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percent over periods of a year or longer. Over the whole five-year period, the net
hedge varies between zero percent and six percent.
We conclude from this (representative) experiment that intertemporal hedges

are remarkably stable over time in the sense that they exhibit low volatility.The
variation in the total stock demand, which is observed in Figure 4, stems primar-
ily from the variation of its mean variance component.
Our second experiment examines the actual behavior, based on market data, of

the portfolio over time for an investor with long horizon of about 30 years at the
beginning of the period. Hedging demands and portfolio positions are computed
using our model along the realized trajectory of the IR and the MPR in the last
31.5 years (our estimation sample). Based on these data, we compute, for each
month of the sample, the optimal share of the stock in the portfolio with and
without hedging for an investor with a risk aversion of 4. As Figure 5 shows, in-
tertemporal hedging increases the optimal share to a reasonable level of about 40
percent at the beginning of the investment horizon to roughly 5 percent at the
end, with an average holding of 30 percent. This is in sharp contrast with the

Figure 4. Market timing: hedging demands and total demand along trajectories of
interest rate andmarket price of risk.Top panels plot typical trajectories of the IR and
MPR processes. Bottom panels graph the fraction invested in the stock and the mean-var-
iance demand (left) and the hedge components (right). R5 4;T5 5.
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myopic mean-variance optimal share, which varies substantially around an aver-
age level of about 10 percent. Note also that the hedging investor will short the
stock only six times during the investment period compared to 73 times for an
unhedged investor. Naturally, the observed increase in stock holdings comes
from the positive IR hedge. From this realistic situation, we also conclude that
intertemporal hedginghas a fundamental impact when the investment horizon is
long. As in the previous experiment, it tends to stabilize the overall stock de-
mand.

B.3. Stochastic Dividends

In the last decade, substantial evidence has accumulated to suggest that the
dividend^price ratio (DPR), denoted by p, is a relevant factor which influences
the evolution of theMPR. A natural question is whether the statistical relevance
of the DPR translates into a significant impact on the portfolio allocation.
To examine this issue, we consider a generalization of our benchmark model in

which the triplet (r, y, p) satisfies

drt ¼ mrðrtÞdt� srr
gr
t dWt; r0 given ð28Þ

dyt ¼ ½myðytÞ þ mryðrt; ytÞ þ mpyðpt; ytÞ�dtþ syðytÞdWt; y0 given ð29Þ

dpt ¼ mpðptÞdt� spp
gp
t dWt; r0 given; ð30Þ

where

mpyðpt; ytÞ � dpð�pp� ptÞðyl þ ytÞ 1� yl þ yt
yl þ yu

� �� �
ð31Þ

Figure 5. Market Timing: hedged and unhedged demands with actual data over a
long horizon (1965 to 1996). Share of stock in portfolio with (top) and without (bottom)
hedging. Fixed horizon of 31.5 years (our sample).
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mpðptÞ ¼ kpð�pp� ptÞð1þ fpð�pp� ptÞ
2ZpÞ; ð32Þ

and mr(rt) is also given by the function (32) substituting r for p.
In this specification, the DPR follows a nonlinear mean-reverting CEV process

and has a linear effect on the drift of theMPR. In other respects, the IR andMPR
processes are the same as in the benchmark case. To calibrate the model with
stochastic dividends, we follow the same approach as for the benchmark case.
The parameter values are in Appendix C. It should be noted that the calibrated
parameters show strong effects of the IR andDPRon the drift of theMPR.All the
other parameters remain close to the values obtained for the benchmark model
with two state variables only.
Table III displays the optimal portfolio when stochastic dividends are ac-

counted for. Strikingly, dividends appear to have very little effect on the portfolio
composition over the range of risk aversions and horizons considered (compare
with Table II). The intuition for this result stems from the fact that DPR does
not have a direct effect on the state price density and optimal terminal consump-
tion. Instead, it has an indirect effect through the drift of the MPR process,
which implies a second order effect on the state price density and optimal con-
sumption. The negligible effect of stochastic dividends stands in contrast with
Barberis (2000), who found a strong effect of predictability through the DPR on

Table III
Dividend EffectFPortfolio Compositionwith Dividend Predictability

This table reports the optimal share of the portfolio invested in the stock (p), the interest rate
hedge (IRH), and the market price of risk hedge (MPRH) for different risk aversions (R) and
horizons (T). Computations are performed in the trivariate model with IR, MPR, and DPR (di-
vidend^price ratio) state variables and three sources of uncertainty. The IR process is mean
reverting with constant elasticity of variance (CEV) and exhibits nonlinearities in the speed
of mean reversion.The MPR process exhibits mean reversion with hyperbolic elasticity of var-
iance and interest rate dependence in the drift. The DPR follows a nonlinear mean-reverting
CEV process and has a linear effect on the drift of the MPR.The values of the parameters for
the processes are reported in Appendix C. ForR51, the portfolio composition is the same as in
Table II.

R T

1 2 3 4 5 10

0.5 p 1.0437 1.0549 1.0530 1.0450 1.0364 0.9749
MV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
IRH � 0.0183 � 0.0364 � 0.0542 � 0.0719 � 0.0895 � 0.1753
MPRH 0.0619 0.0912 0.1072 0.1170 0.1259 0.1502

2 p 0.2523 0.2577 0.2651 0.2720 0.2806 0.3189
MV 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
IRH 0.0092 0.0184 0.0276 0.0367 0.0459 0.0914
MPRH � 0.0069 � 0.0106 � 0.0125 � 0.0147 � 0.0152 � 0.0226

4 p 0.1332 0.1438 0.1558 0.1674 0.1799 0.2370
MV 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
IRH 0.0138 0.0276 0.0414 0.0552 0.0690 0.1378
MPRH � 0.0056 � 0.0087 � 0.0106 � 0.0128 � 0.0141 � 0.0257
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the portfolio policy. Note, however, that his reference model had i.i.d. excess re-
turns. As a result, adding the dividend yield as a predictor led to a considerable
increase in predictive power and had a significant impact on the portfolio shares.
In our benchmark model, predictability is already included through mean rever-
sion and through the IR, which is a strong predictor of excess returns and the
MPR.The additional predictive power of the dividend yield is, therefore, not as
strong as in Barberis (2000).

B.4. The Importance of Modeling Nonlinearities

One important question concerns the relevance of a nonlinear process, such as
the NMRHEVmodel, for asset allocation purposes. Even if this model provides a
better empirical description of the data, it is by no means assured that portfolio
rules will be significantly affected by the nonlinearities present in the data.
To address this issue, we examine the properties of the optimal portfolio ob-

tained in each of the models. On one hand, we consider the NMRCEV^NMRHE-
VID model, described above, calibrated to the data. On the other hand, we
examine a model in which the IR process is mean reverting with square-root vo-
latility (MRSR) and the MPR follows a mean-reverting Gaussian process with a
linear interest rate dependence in the drift (MRGID). Specifically, our second
model is

drt ¼ krð�rr� rtÞdt� srr0:5t dWt ð33Þ

dyt ¼ kyð�yy� ytÞ þ drð�rr� rtÞ
� �

dtþ sydWt; ð34Þ

where kr, �rr, sr and ky, �yy, dr, sy are nonnegative constants. Clearly, the MRSR^
MRGID model is a subcase of our general setting obtained by setting some para-
meters equal to zero. Model parameters are calibrated to the data using the ap-
proach in Appendix C. Parameter values are reported in the same appendix.
The absence of a nonlinear term in the drift of the IR implies that we under-

estimate the speed of mean reversion in periods of high interest rates.This non-
linear term captures the faster mean reversion when the IR becomes large, as
was the case at the beginning of the 1980s.Without this term, the mean reversion
is as slow in periods of high and low interest rates, and this tends to increase the
demand for the risky asset due to hedging considerations.
As for the MPR, a linear and constant diffusion coefficient leads to an under-

estimation of the corresponding hedging term.The volatility of the MPR is time
varying and evolves in a nonlinear fashion. It is shown here that modeling this
nonlinear behavior is important for the optimal portfolio.
Figure 6 displays the risk aversion effects for a fixed horizon of five years.The

top panels show that the MRSR^MRGID specification overestimates (underesti-
mates) the IR hedge and underestimates (overestimates) the MPR hedge when
risk aversion exceeds (falls below) 1. The overall hedging demand and the total
demand for the riskyasset are always biased high.This follows since the IR hedge
dominates when R41, while the MPR hedge tends to dominate when Ro1. The
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magnitude of the bias is important. For a risk aversion of 4, the optimal invest-
ment in the risky asset is overstated by about 42.67 percent (25.58 percent instead
of 17.93 percent), the IRH by a factor of 2.5 (17.10 percent instead of 6.84 percent),
and the MPRH is understated by a factor of nearly 3 (�4.02 percent instead of
� 1.41percent). Although not reported here, we have also examined the behavior
of the bias as a function of the investment horizon. Our experiments have shown
that the size of the bias increases with horizon.

V. Hyperbolic Absolute Risk Aversion (HARAUtility)

Utilities with constant relative risk aversion have become a central feature of
the workhorse models in finance.Their appeal is partly based on the fact that the
demand functions are proportional towealth (seeMerton (1971)), which improves
the tractability of asset pricing or asset allocation models. From an economic
perspective though, it is apparent that this property is very strong and unlikely
to provide a good description of individual behavior. Some prominent economists

Figure 6. The effects of nonlinearities on total stock demand and hedging de-
mands. IRH (top-left),MPRH (top-right), hedging demand (bottom-left) and total demand
(bottom-right).
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(e.g., Arrow (1975)) have, in fact, argued that increasing relative risk aversion is a
more compelling assumption. Others have suggested that the preservation of a
minimum standard of living is a fundamental concern.
Utility functions in the HARA class can be used to model these aspects.They

take the form

uðXÞ ¼ 1
1�R ðX þBÞ1�R; ð35Þ

where R40 and B are constants. The relative and absolute risk aversion coeffi-
cients are, respectively, R(X)5RX/(X1B) and Ra(X)5R/(X1B). Absolute risk
aversion is decreasing and convex with an asymptote atX5 �B.WhenB40, re-
lative risk aversion is strictly increasing and concave, with an asymptote at
X5 �B.When Bo0, relative risk aversion is decreasing and convex in wealth
and becomes infinite as wealth approaches the subsistence level �B.15 In this
case, the utility function displays intolerance for wealth levels below the floor
�B.This specification is well suited to analyze portfolio allocationwhen a mini-
mum terminal balance is sought. Portfolio insurance, goal constraints, and sub-
sistence constraints are examples of problems in this category.

A. Binding NonnegativeWealth Constraint

Although more compelling from an economic point of view, the generalized
power utility has not seen much use because of its lack of tractability. One diffi-
culty, highlighted by Cox and Huang (1989), is that consumption is nonlinear
with respect to wealth at sufficiently low wealth. This is a consequence of the
consumption constraint, which binds with positive probability and modifies the
nature of the solution in a critical way.While Cox and Huang solve for the con-
sumption policy in this setting, their analysis provides only limited information
about the optimal portfolio.This is where our approach can prove useful, since it
is ideally suited to study cases where nonlinearities matter.
The optimal portfolio is now given by (7)^(10) withR(X)5RX/(X1B).Table IV

reports the portfolio components, for a set of values ofX andR, when the nonne-
gativity constraint on terminal wealth is accounted for and in the absence of a
wealth constraint. Computations are performed for the three-state variables
model with DPR effect of Section IV.B.3.
The table shows that the constraint has a dominant effect at low levels of

wealth. In the absence of a constraint, the fraction invested in the stock, as well
as the mean variance and hedging terms, explode. With a nonnegativity con-
straint, the behavior is much more reasonable. For instance, with R51, the IR
hedge increases from � 50.25 percent when wealth is 10 to � 55.51 percent when
wealth falls to 1.The corresponding numbers in the absence of the constraint are,
respectively, �102.65 percent and �1027.16 percent! These results underscore
the importance of accounting for wealth constraints for sound asset allocation
rules.

15 To ensure that preferences are defined for all XZ0, we set u(X1B)5 �N for Xo�B,
when Bo0.
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Perhaps more striking is the change in the signs of the hedges as wealth be-
comes low or as the coefficient R approaches one. To understand this property,
suppose a unit increase in the state price density xT and consider its impact on
the cost of optimal consumption in a given state, xT((yxT)� 1/R�B)1. Taking the
derivative with respect to xT shows that the marginal cost of consumption is po-
sitive (negative) if and only if

ðyxTÞ�1=R �B
� �þ

� 1
R
ðyxTÞ�1=R1XT40 ¼ 1� 1

R

� �
ðyxT Þ�1=R �B

� �
1XT40 ð36Þ

is positive (negative).The first term, ((yxT)
� 1/R�B)1, is the additional cost of main-

taining consumption (income effect); the second term, �ð1=RÞðyxT Þ�1=R1XT40, is
the cost reduction induced by the response of optimal consumption (substitution
effect).When B5 0 (i.e., CRRA), the net effect is driven by whether risk aversion
exceeds, or falls below, 1.This was the case studied in the previous section. Sup-
pose nowB40.When initialwealth is low, this marginal cost is dominated by the
negative substitution effect. At large values of wealth, and when R41, the posi-
tive income effect dominates.When R approaches 1, and for all values of wealth,

Table IV
HARAUtilityFPortfolio Componentswith aWealth Constraint (B5100)
This tables reports the optimal portfolio components: the total share p invested in the stock, the
shares represented by the mean-variance (MV) component, the interest rate hedge (IRH), and
the market price of risk hedge (MPRH).The utility function is of the HARA type, with relative
risk aversion coefficientR(X)5RX/(X1B).The shares are reported for a set of values of wealth
(X) and risk aversion (R), when the nonnegativity constraint on terminal wealth is accounted
for and in the absence of a wealth constraint. Computations are performed in the trivariate
model with IR, MPR, and DPR state variables, and three sources of uncertainty.The IR process
is mean reverting with constant elasticity of variance (CEV) and exhibits nonlinearities in the
speed of mean reversion.TheMPRprocess exhibits mean reversionwith hyperbolic elasticity of
variance and interest rate dependence in the drift.The DPR follows a nonlinear mean-reverting
CEVprocess and has a linear effect on the drift of theMPR.The values of the parameters for the
processes are reported in Appendix C.

R X

1 5 10 100

constraint with without with without with without with without

1 p 2.7723 18.4078 2.0739 4.0807 1.7417 2.2853 0.6793 0.6793
MV 2.1378 27.6850 1.9535 5.9346 1.8741 3.2163 0.7722 0.7722
IRH � 0.5551 � 10.2716 � 0.5182 � 2.0536 � 0.5027 � 1.0265 � 0.1029 � 0.1029
MPRH 1.1896 0.9944 0.6386 0.1998 0.3704 0.0955 0.0099 0.0099

2 p 2.3485 8.6882 1.5648 1.9872 1.1324 1.1545 0.4066 0.4066
MV 2.0322 13.8879 1.8145 2.9693 1.5144 1.6084 0.3860 0.3861
IRH � 0.5356 � 5.0905 � 0.4875 � 0.9400 � 0.3854 � 0.4227 0.0421 0.0421
MPRH 0.8519 � 0.1093 0.2379 � 0.0420 0.0034 � 0.0312 � 0.0216 � 0.0216

4 p 1.9746 4.2165 1.0366 1.0469 0.6460 0.6461 0.2846 0.2846
MV 1.9201 6.9059 1.4324 1.4853 0.8051 0.8051 0.1930 0.1930
IRH � 0.5100 � 2.4456 � 0.3564 � 0.3774 � 0.1180 � 0.1180 0.1153 0.1153
MPRH 0.5645 � 0.2438 � 0.0393 � 0.0609 � 0.0410 � 0.0410 � 0.0237 � 0.0237
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the net effect is negative. Since the investor, ultimately, seeks insurance against
the impact of shocks on the cost of optimal consumption, it is clear that the rela-
tive strength of the two effects determines the signs of the hedges. In particular,
as wealth decreases to 0 or R decreases to 1, we expect to see the IRH switching
from positive to negative and the MPRH from negative to positive. This is pre-
cisely the behavior displayed in the table.16

Lastly, when wealth increases, the portfolio structure converges to that under
constant relative risk aversion.This reflects the vanishing likelihood of abinding
constraint. In the limit, the preference ordering of random terminal wealth is
unaffected by the constant B.

B. Intolerance forWealth Shortfalls (Portfolio Insurance)

When Bo0, preferences display intolerance for terminal wealth outcomes be-
low the benchmark �B.The presence of this floor will induce a modification in
the portfolio behavior as the investor seeks insurance against intolerable out-
comes.
Figure 7 displays results for the three-state variables model with DPR effects

and R51. The fraction invested in the stock market, the mean-variance (MV)
component, and the MPRH are increasing functions of wealth, while the IRH is
decreasing in wealth. As wealth approaches the present value of the floor, the
investor adopts a more conservative policy: The fraction invested in the stock
decreases to a positive value. This behavior may seem puzzling, since the MV

Figure 7. Intolerance for wealth shortfalls (portfolio insurance). Portfolio composi-
tion with a HARA utility function, u(X)5 (1/(1�R))(X+B)1�R, with B5 �10,000, R51,
and T510. Share in stock and MVcomponent (left panel), IRH, MPRH, and sum of the
hedges (right panel).

16When wealth is unconstrained, B has a marginal effect on the MPRH, sinceRT
t DtysðdWs þ ysdsÞ is a martingale under the risk neutral measure. The sign of the MPRH
is then driven by the first term in the marginal cost of consumption, provided R is large en-
ough. This explains the negative MPRH in Table IVat low wealth and R5 2, 4.
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component vanishes (recall that the MV demand is inversely related to relative
risk aversion which approaches infinity).The explanation lies in the behavior of
the hedges. Even at low levels of wealth, the investor still cares about the present
value of the floor and will seek to hedge against its fluctuations.This motivates
hedging demands against the impact of IR and MPR innovations on the present
value of the floor. In effect, the limiting portfolio synthesizes the floor �B at
dateT.
At the other extreme, for large values of wealth, the floor becomes less relevant.

In the limit, the investor behaves as if relative risk aversion were constant, and
all the portfolio components converge to those of the limiting CRRA portfolio.
With R51, the hedging terms eventually vanish.

VI. Investing in a MultiassetWorld

This section is devoted to large-scale models with multiple assets and state
variables.We first outline the setting, then examine a particularly relevant model
with old and new economy stock funds.

A. A Large-scale Model with Nonlinear Dynamics

Suppose that there are d Brownian motions and d11 securities: d�1 stock
portfolios, one mutual fund composed of long term pure discount bonds, and
the riskless asset.There are 2d state variables: one interest rate, d market prices
of risk, and d�1 state variables (dividends) affecting the evolution of the market
prices of stock risks.
The dynamics of the interest rate (r) and the price of the bond portfolio (Sb) are

drt ¼ mrðrtÞdt� srr
gr
t dW1t ð37Þ

dSbt ¼ Sbt ðrt þ sby1tÞdtþ sbdW1t½ �; ð38Þ
where mr(rt) is given by (32) substituting r for p. Stock portfolios’ prices (S1, y,
Sd�1) satisfy

dSit þ Sitpitdt ¼Sit rt þ si ri;1y1t þ . . .þ ri; iyit þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
yiþ1t

� �� �
dt

þ Sitsi ri;1dW1; t þ . . .þ ri; idWi; t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
dWiþ1; t

� � ð39Þ

for i51,y, d�1, with r2i ¼
Pi

k¼1 r
2
i;k. The constant � ri,1 is the correlation be-

tween IR changes and the return on fund i.The correlation between funds i and j,
ioj, is ri;1rj;1 þ . . .þ ri; irj; i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
rj; iþ1.The coefficients si, ri,k with i, k51,

y, d�1, are constant.
In this setting,W1 is IR risk andW2,y,Wd represent risk factors affecting stock

returns. More specifically,W2 captures the incremental risks affecting fund 1
after accounting for IR risk (i.e., fund 1 returns depend on (W1,W2)). Similarly,
Wk11 is the incremental factor impacting the returns on fund k after the first k
factors have been accounted for (i.e., fund k returns depend on (W1,y,Wk11)).

The Journal of Finance426



Since there are d11 securities and d Brownian motions, all risks can be hedged
away.The bond portfolio provides a perfect hedge against IR risk.
To compute the optimal portfolio shares, we assume that (y, p) follow a joint

diffusion process, which satisfies the assumptions of Theorem 1. The structure
of the optimal portfolio is intuitive. First, note that fund d�1 is the only one ex-
posed toWd risk. Since other sources of risk (i.e.,W1,y,Wd�1), can be hedged
away, the demand for fund d�1 is entirely driven by the risk-return characteris-
tics associated withWd.Therefore, the demand for fund d�1,

pd�1; t ¼
1

sd�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2d�1

q 1
R
ydt � �aadðrt; yt; ptÞ

� �
ð40Þ

includes a mean-variance component and an intertemporal hedge against fluc-
tuations in the opportunity set induced byWd risk (term involving �aadðrt; yt; ptÞ).
In effect, fund d�1provides the best hedge against this particular source of risk.
However, the structure of the portfolio shares for the other funds is different.

Indeed, since the returns on fund d�1 also depend onW1,y,Wd�1, the position
taken in fund d�1 induces an exposure toWkequal to sd�1rd�1, kpd�1, t fork51,
y, d�1. The investor uses the other funds to hedge these induced exposures
away. For example, fund d� 2 serves to eliminate the exposure toWd�1 risk,
sd�1rd�1, d�1pd�1, t. Its demand is given by

pd�2; t ¼
1

sd�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2d�2

q 1
R
yd�1t � �aad�1ðrt; yt; ptÞ

� �
�

sd�1rd�1;d�1

sd�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2d�2

q pd�1; t: ð41Þ

This explains the last component in pd� 2, t.The remaining demand for fund d� 2
has the usual structure, namely a mean-variance term and an intertemporal
hedge against fluctuations induced byWd�1 risk (termwith �aad�1ðrt; yt; ptÞ). Simi-
larly, fund k serves to hedge away the exposure toWk11 risk induced by the de-
mands for funds k11,y,d�1.The remaining demand components are the mean-
variance term and an intertemporal hedge againstWk11 risk. This structure is
common to all funds’demands, including the bond fund, which is given by,

pb; t ¼
1
sb

1
R
y1t � �aa1ðrt; yt; ptÞ

� �
� 1
sb

Xd�1
j¼1

sjrj;1pj; t

 !
: ð42Þ

In these expressions, �aaiðrt; yt; ptÞ ¼ aiðrt; yt; ptÞ þ biðrt; yt; ptÞ where ai(rt, yt, pt),
bi(rt, yt, pt) are defined in Section 3.
To demonstrate the versatility of the approach, we take 11 assets, 20 state vari-

ables, and 10 sources of uncertainty (d510).The first fund is the market portfolio
of risky securities (its returns depend on (W1,W2)).The next eight funds are pure
hedging funds: We assume that fund j is perfectly correlated withWj11 risk,
j5 2,y,9 (i.e., rj, k5 0 for krj). The bond fund hedgesW1 risk.We also assume a
symmetric structure for the state variables y, p: For i5 2,y,d, each pair (yi, pi)
satisfies an identical NMRHEV^NMRCEV process as in the benchmark model
with DPR; for i51 the market price of IR risk satisfies an NMRHEV process
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without dividend effect. For parameter values, we took the estimates in the cor-
responding benchmark models (with DPR for i5 2,y,d and without for i51).
TableV displays the portfolio behavior when risk aversion and the correlation

coefficient r1 between the IR and the stock market index vary. Note that the de-
mand for the stock is convex with respect to correlation.This reflects the parti-
cular risk-return trade-off embedded in the demand for the market portfolio
(inversely related to the stock’s exposure to pure market risk, s1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r21

p
).The de-

mand is maximal when the correlation approaches71: In the limit, the investor
attempts to extract benefits from the stock’s vanishing exposure toW2 and can
only do so by increasing the scale of his holdings in an unbounded manner. Natu-
rally, this behavior is strongest at lower levels of risk aversion.
The bond fund hedges against IR risk.When the demand for the market port-

folio increases, the exposure of the portfolio to IR risk increases as well, and this
prompts an increased demand for fund 1. With negative (positive) correlation,
this entails taking a positive (negative) position in the bond fund. Again, demand
explodes as correlation approaches 71, reflecting the behavior of the stock de-
mand. Other funds are held for risk-return trade-off as well as hedging purposes.
Since funds’ risks do not affect the IR or the market price of stock market risk
in this model, these hedging demands serve the sole purpose of hedging MPR
fluctuations.

TableV
Stock, Bond, and Mutual Fund Demands in the Multiasset Model

This table reports the optimal shares invested in the stock market index (ps), a long-term bond
fund (pb), and a mutual fund (p2), in a model with 11 assets (10 risky assets and cash), 20 state
variables, and 10 sources of uncertainty.The state variables are the interest rate (IR), 10 market
prices of risk (MPR), and 9 dividend-price ratios (DPR). A symmetric structure is assumed:
Each pair of state variables (MPR, DPR) follows an identical bivariate process with nonlinear
mean reversion and hyperbolic elasticityof variance for theMPRand nonlinear mean reversion
with constant elasticity of variance for the DPR. The market price of IR risk satisfies a non-
linear mean-reverting process with constant elasticity of variance andwithout dividend effect.
For parameter values, we took the estimates in the corresponding benchmark models.The table
displays the portfolio behavior when risk aversion and the correlation coefficient r1between the
IR and the stock market index vary.

R correlation

� 0.9000 � 0.5000 0.0000 0.5000 0.9000

1 ps 1.1470 0.5773 0.5000 0.5773 1.1470
pb 1.5323 0.7886 0.5000 0.2113 � 0.5323
p2 0.5000 0.5000 0.5000 0.5000 0.5000

2 ps 0.5341 0.2707 0.2345 0.2718 0.5353
pb 0.8062 0.4611 0.3252 0.1906 � 0.1562
p2 0.2338 0.2342 0.2339 0.2333 0.2343

3 ps 0.3496 0.1762 0.1533 0.1770 0.3453
pb 0.5832 0.3565 0.2673 0.1788 � 0.0419
p2 0.1517 0.1529 0.1537 0.1539 0.1522

4 ps 0.2648 0.1289 0.1124 0.1298 0.2578
pb 0.4780 0.3051 0.2386 0.1755 0.0036
p2 0.1164 0.1153 0.1144 0.1140 0.1149
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B. Asset Allocation in the New Economy (FourAsset Classes)

Wenow specialize our multiasset model to four asset classes: three risky funds
(N5 3) and cash (the riskless asset).The risky funds are a portfolio of ‘‘old-econ-
omy’’ stocks (S&P500), a portfolio of ‘‘new-economy’’ stocks (Nasdaq), and a port-
folio of long-term pure discount bonds. Old-economy stocks are comprised of
firms involved in traditional activities, such as manufacturing, industry, and ser-
vices.They typically pay dividends. New-economy stocks are identifiedwith com-
munications, Internet, and biotechnology, among others. There are three
Brownian motions, four securities, and five state variables (one IR, three MPRs,
and one DPR) affecting the opportunity set.
The price of the bond portfolio Sb is given by (38). Old- and new-economy port-

folios prices, S1and S2, follow the dynamics (39) with d5 3. In this model,W1 is an
IR risk factor,W2 is old-economy firms’ risk, andW3 represents new-economy risk
factors. The IR r satisfies (37). The MPRs (y1, y2, y3) and the DPR of old-economy
stocks p follow the correlated processes

dyit ¼ kyi �yyi � yit
� �

þ mryiðrt; yitÞ þ mpyiðpt; yitÞ
� �

dtþ syiðyitÞdWt; i ¼ 1; 2; 3; ð43Þ

dpt ¼ mpðptÞdt� p
gp
t spdWt; ð44Þ

where mryiðrt; yitÞ is defined in (25), m
p
yiðrt; yitÞ and mp(pt) are as in (31) and (32), and

syi(yit) is given by (26). In the expression for syi(yit), the term syi� [si1, si2, si3] is a
1
3 vector.The volatility of the DPR, sp�[sp1, sp2, sp3], is also 1
3.Thus, we al-
low for arbitrary correlations amongMPRs and between theMPRs and the DPR.
The fractions of wealth invested in the stock funds (p1t, p2t) and the bond fund

(pbt) have the structures discussed in Section VI.A, and the same general com-
ments apply. To get more insights about the portfolio properties, we calibrate
the model (seeAppendix C) and compute the investment shares.TableVI displays
their behavior with respect to maturity when risk aversion equals 4.Two surpris-
ing properties are the negative holdings of long-term bonds and the decreasing
fraction invested in stocks when the horizon increases. For instance, with a hor-
izon of six years,79 percent of wealth is in the S&P500,11.7 percent in the Nasdaq,
and �12.2 percent in the bond portfolio; with a 10-year horizon, the respective
shares are 73.4 percent, 11.3 percent, and �12.4 percent. Moreover, the investor
displays, in general, a preference for traditional ‘‘old-economy’’ stocks over more
risky ‘‘new-economy’’stocks.
The negative demand for long-term bonds is prompted by hedging considera-

tions.While the mean-variance term and the intertemporal hedge are positive,
they are overwhelmed by the hedging demand induced by investments in the
S&P500 and the Nasdaq. For instance, with a horizon of six years, we have a
mean-variance demand of 36.8 percent, an intertemporal hedge of 2 percent,
and an induced hedge of � 51percent.The sign of the induced hedge follows from
the negative association between interest rate risk and stock or bond returns.
Given the positive investments in the S&P500 and the Nasdaq, the correlation
structure prompts a position of the opposite sign in the bond portfolio.The size
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of this hedging demand is prompted by the large fraction of wealth invested in
the S&P500 and the Nasdaq.
The fact that the share invested in stocks goes down with the horizon goes

against the popular notion that ‘‘stocks are less risky in the long run’’and, there-
fore, should be held more prominently in longer horizon portfolios.This surpris-
ing conclusion reflects the congruence of several effects. First, note that theMPR
hedge in the Nasdaq demand becomes more important (i.e., more negative) with
the horizon.This horizon impact on the hedge is typical: It parallels the hedging
behavior uncovered in the simpler models of prior sections. It contributes to a
reduction in the investment in new economy stocks. Second, note that the inter-
temporal hedge component of the S&P500 demand displays more intricate ef-
fects. This hedge is positive for short horizons, but decreases and eventually
becomes negative.The sign reversal is new in the context of models with constant
relative risk aversion and reflects the conflicting effects ofW2 innovations on y1
and on (y2, y3) (i.e., s1240 and s22, s32o0).The reduction of this hedge decreases
the demand for the S&P500. Finally, note that the induced hedging component in
the S&P500 demand decreases as well; this reflects the reduced exposure to old-
economy risks induced by the decreasing fraction of wealth invested in the Nas-
daq.
The Nasdaq demand is fueled by a positive mean-variance term (about 19 per-

cent with a six-year horizon), which is reduced by an intertemporal hedge (about
8 percent).This hedging demand is entirely motivated by fluctuations in the mar-
ket prices of risk y due to Nasdaq riskW3.The size of this MPR hedge illustrates

TableVI
NASDAQ, S&P500, and Bond Demands

This table reports the optimal shares invested in the S&P500, the NASDAQ, and abond fund, in
a model with four asset classes and three sources of uncertainty.The demand for cash, the last
asset, is 100 percent minus the sum of the other demands. The state variables are the interest
rate (IR), the three market prices of risk (MPR) and the dividend price ratio of the S&P500
(DPR).The MPRs follow processes with nonlinear mean reversion and hyperbolic elasticity of
variance.The DPR and the IR follow mean-reverting constant elasticity of variance processes,
as in the benchmark model with DPR.The parameter values are reported in Appendix C. The
table displays the portfolio behavior for a coefficient of relative risk aversion of 4 and maturities
from 2 to 10 years.

Maturity

2 4 6 8 10

SP500 Holding 0.8296 0.8221 0.7901 0.7652 0.7345
MV 0.7332 0.7332 0.7332 0.7332 0.7332
Intertemporal Hedge 0.0679 0.0643 0.0333 0.0100 � 0.0214
Induced hedge 0.0284 0.0244 0.0234 0.0219 0.0226

NASDAQ Holding 0.1411 0.1212 0.1166 0.1092 0.1127
MV 0.1940 0.1940 0.1940 0.1940 0.1940
Intertemporal hedge � 0.0529 � 0.0728 � 0.0774 � 0.0848 � 0.0813

Long term Holding � 0.0648 � 0.0799 � 0.1220 � 0.1681 � 0.1239
Bonds MV 0.3683 0.3683 0.3683 0.3683 0.3683

Intertemporal hedge 0.1160 0.0831 0.0204 � 0.0442 � 0.0144
Induced hedge � 0.5493 � 0.5314 � 0.5109 � 0.4922 � 0.4779
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the fact that MPR fluctuations are important in a multiasset world (the MPR
hedge represents roughly � 66 percent of the fraction held whenT5 6).
The demand for the S&P500 has an important mean-variance term and more

modest hedging components. For a horizon of six years, the mean-variance term
is 73.3 percent, the intertemporal hedge 3.3 percent, and the hedge induced by the
position in theNasdaqabout 2.3 percent. Interestingly, the position in theNasdaq
prompts an increase in the demand for the S&P500. This is due to the negative
correlation, r2,25 � 0.1274, between the Nasdaq and old-economy risk factorW2.
Equally surprising is the fact that the intertemporal MPR hedge increases the
demand for the S&P500 (for horizons less than 10 years). This reflects, again, a
correlation effect: Here, it is negative correlation between S&P500 risk factors
(i.e.,W2) and their MPR (y2), which is a source of the result.

VII. AComparison of Methods in the Benchmark Model

The Monte Carlo approach entails the computation of expectations that
depend on the Malliavin derivatives of the state variables. In numerical imple-
mentations, the state variables and their Malliavin derivatives are simulated
using the Euler scheme, with or without transformation of the state variables.
An alternative approach, proposed by Brennan et al. (1997), computes the
portfolio using the Bellman equation for the value function of the problem.
In this section, we compare the two approaches and document the numerical ad-
vantages of our method.We perform this comparison in the benchmark model
with CRRA.

A. Three CompetingMethods

We consider three approaches.The first one is theMonte Carlo approach using
Malliavin derivatives, whichwas described in Sections II and III.To simplify the
notation, we refer to it by the acronym MCMD (Monte Carlo with Malliavin De-
rivatives).
The second is a PDE method based on the dynamic programming approach of

Merton (1971). For CRRA, the proportions invested are independent of wealth
and given by

p0s ¼ 1
R
y0 þ fy

f
sY ð45Þ

Lf � ry0ðfysY Þ0 þ
1
2
rðr� 1Þkyk2 � rr

� �
f ¼ 0; ð46Þ

where r ¼ 1� 1
R and f(T, �)5 1.This characterization of the portfolio, with a lin-

ear PDE for the function f, appears in Schroder and Skiadas (1999) and Liu
(2001).17 It simplifies the computational task and, therefore, biases the results in

17 The approach in Brennan et al. (1997) is based on the nonlinear PDE for the function p,
defined by p�log f.
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favor of the PDE method. We take it as a basis for our comparison.18 In the
numerical implementation, the solution is computed using the method of
Finite Differences. We refer to this combination by PDEFD (PDE Finite
Differences).
The third approach is another Monte Carlo method recently proposed by Cvi-

tanic et al. (CGZ) (2003). It uses the fact that the portfolio is the limit of the covar-
iation19

p̂p0tst ¼ limh!0
Et xrt;T

ðWtþh�WtÞ
xt; tþh

h i
Et xrt;T
h i : ð47Þ

The procedure proposed by CGZ approximates the portfolio by fixing a discreti-
zation h. It then computes the conditional expectations on the right-hand side for
this chosen h.The procedure appears easy to implement, since it does not involve
Malliavin derivatives.20 But it is based on an approximation (because h is fixed),
and this will affect its convergence properties.We call this method MCC (Monte
Carlo Covariation).21

18 The link with Monte Carlo is easy to see, since the solution of (46) can be written as
fðt; YtÞ ¼ Et½xrt;T �. Taking the Malliavin derivatives on both sides of this equation gives
Dtfðt; YtÞ ¼ fyðt; YtÞsY ðt; YtÞ ¼ �fðt; YtÞðaðt; YtÞ þ bðt; YtÞÞ and therefore ðfy=fÞsY ¼ �ðaþ bÞ,
where a, b are defined in (12) and (13). This shows that (45) and (7) are different representa-
tions of the same function.
19 The optimal portfolio is the covariation between optimal wealth and the Brownian motion,

d½X;W�t ¼ p0tXtstdt. Thus, p
0
tst ¼ X�1

t limh!0
1
hEt½ðXtþh �XtÞðWtþh �WtÞ� ¼ limh!0

1
hEt½ðXtþh=

XtÞðWtþh �WtÞ�: Formula (47) follows since Xtþh=Xt ¼ ðEtþh½xrt;T �=Et½xrt;T �Þ
x�1t; tþh:
20 The Monte Carlo Covariation method may be better suited to handle non-Markovian dy-

namics. However, it does not provide the IR- and MPR-hedge decomposition that MCMD pro-
vides.
21Brandt et al. (2001) propose another simulation method in discrete time. Their procedure

involves three steps. The first step approximates the Bellman equation using a Taylor series
expansion around wealth growing at the riskless rate (a quartic expansion is suggested by
BGS). The optimal portfolio for this approximate problem satisfies a nonlinear polynomial
equation (first-order condition) whose coefficients are expectations of the unknown value
function and its derivatives. The second step uses a regression method in combination with
Monte Carlo simulation to estimate these coefficients. This step parallels the algorithm pro-
posed by Longstaff and Schwartz (2000) for the valuation of American-style options. The last
step computes the approximate optimal portfolio using an iterative procedure to solve the
nonlinear polynomial first-order condition. Since the estimate of the approximate portfolio
at a given point in time requires knowledge of future estimates of the approximate portfolio,
the algorithm is applied in a backward manner starting with the last period and moving re-
cursively through time. The overall methodology is somewhat similar to CGZ, in that it pro-
vides a numerical estimation of an approximation of the optimal portfolio. Implementation
raises challenging questions. First, for a fixed polynomial basis, the approximate solution will
not converge to the true portfolio policy when the size of the time interval decreases, but to
its projection on the selected basis (see Cle¤ ment, Lamberton, and Protter (2002) for a proof of
this result forAmerican-style options).When the residual of this projection is large, the meth-
od cannot give a precise approximation. Second, proper implementation requires auxiliary
tests to verify the optimality of the portfolio computed for the approximate problem. These
tests are required because the approximate objective function (being a polynomial) need not
be concave, and the first-order conditions (being polynomial equations) may have multiple
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B. Convergence Rate

Our first comparison between the three approaches involves their respective
convergence properties, which are summarized inTableVII.
For PDEFD methods, the space is discretized in Mj points for state variable j

and time inN points; the computation of numerical derivatives uses a discretiza-
tion of length hj for the derivative relative to j. ForMonte Carlo methods,M is the
number of replications andN the number of time points; for MCC, we also have h
for the time increment used to compute the approximation in (47). The table
shows that the order of convergence for MCC and PDEFD depends on three
terms, one of order h for MCC and minjh2j for PDEFD.This term appears because
these methods do not provide a numerical approximation of the true optimal
portfolio, but rather a numerical approximation of a convergent approximation
of the true policy.This term is absent fromMCMD, since the true optimal portfo-
lio is computed.
In the case of MCC, this additional term slows down the overall convergence

rate, since we draw random variables whose variance depends on the discretiza-
tion parameter h. This perturbation parameter must then be controlled jointly

TableVII
Convergence Rates for Numerical Methods Used to Compute Portfolio

Demands
The table compares the convergence rates of three numerical methods that are used to compute
the optimal portfolio in the benchmark modelwithconstant relative risk aversion. Convergence
rates are expressed in terms of the discretization step (h), the number of discretization points in
space or simulations (M), and the number of discretization points in time (N). The competing
methods are the PDE (partial differential equations) finite difference methods, theMonte Carlo
covariation method (MCC), and the Monte Carlo Malliavin derivatives method (MCMD). The
table shows that the order of convergence for MCC and PDEFD depends on three terms, includ-
ing a term of orderh forMCCand minj h2j for PDEFD.This term appears because these methods
do not provide a numerical approximation of the true optimal portfolio, but rather a numerical
approximation of an approximation of the true policy.This term is absent fromMCMD because
the true optimal portfolio is computed.

Estimator Convergence rates

PDE finite difference methods (PDEFD)
Explicit (PDEFD-E): O 1

N þ 1
maxjM2

j
þminj h2j

� �

Crank^Nicholson (PDEFD-CN): O 1
N2 þ 1

maxjM2
j
þminj h2j

� �

Monte Carlo covariation (MCC) OP 1
N þ 1ffiffiffiffiffiffi

Mh
p þ h

� �
Monte Carlo Malliavin derivatives (MCMD) OP 1

N þ 1ffiffiffiffi
M

p
� �

roots. These verifications could add substantial computation time to the procedure. In addi-
tion, for wealth-dependent utility functions, their method solves the problem for a grid of va-
lues for wealth. This introduces another approximation and increases the computation time.
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with the choice of the number of Monte Carlo replications. Otherwise, the var-
iance of the estimator will explode. In contrast, this term does not affect the over-
all convergence rate of PDEFDmethods, since both implicit and explicit methods
are already second order in space.
What about the other terms in the order of convergence? For PDEFD, these

terms appear because discretization is in time (N) and space (Mj). For MC meth-
ods, we rely on a law of large numbers to approximate an expectation by an aver-
age overM replications. The second error is due to the fact that, in general, we
cannot sample from the true distribution of xt, T but, instead, we must rely on a
numerical solution of the SDE based on a discretization scheme.
The denominators of the expressions inTableVII show that PDE methods con-

verge faster than MC methods. An important caveat is in order in that regard.
PDE methods converge globally at the given rate if and only if the boundary con-
ditions are correct. Unfortunately, the choice of appropriate boundary condi-
tions is a nontrivial issue. If the domain of state variables is unbounded, in
order to obtain a finite numerical algorithm, we must impose nonnatural bound-
aries and specify the unknown behavior of the function at those points. For ex-
ample, if the short rate is unbounded,wemust specify someupper bound ru. Since
xt,T decreases in r, it makes sense to impose an absorbing Dirichlet condition
f( � , ru, �)5 0. Unfortunately, this could induce a discontinuity in the function
and prevent attainability of the theoretical convergence rate.22 Alternatively, if
we impose a reflecting Newton boundary condition, say @rf( � , ru, �)5 0, and if
this condition is misspecified, we would not attain the theoretical convergence
rate either.
The main difference between the twoMonte Carlo methods comes from the or-

der of convergence of the limiting distribution of the errors.23 It is
ffiffiffiffiffiffi
M

p
=N for

MCMD andM1/3/N for MCC.This means that if we want to shorten the length of
asymptotic confidence intervals by half, we need only quadruple the number of
replications and double the number of discretization points in timeusingMCMD.
WithMCC, we need eight times more replications and still must double the num-
ber of discretization points in time. Moreover, we must simultaneously shorten
the time lead for the increment of the Brownian motion by half. If 1/h and/or N
are increased at a higher rate, the asymptotic variance explodes and so does the
length of asymptotic confidence intervals. On the other hand, if 1/h and/orN are
increased at a lower rate, the second-order bias increases, which reduces the true
coverage probability of confidence intervals based on the normal distribution
with a given nominal size.

C. Efficiency

Another important aspect of the comparison is the efficiency of the method,
which can be measured by the amount of memory required and the number of
arithmetic calculations performed.The latter determines the speed of execution.

22 See Heston and Zhou (2001) for more results along these lines.
23 For full details and expressions for the limit distributions, see DGR (2001).
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It is not the purpose of this paper to compare the methods in every detail. How-
ever, a few items are important to properly assess the candidates.
The computational requirements of the various methods are very different. For

PDE methods, a better rate of convergence may not result in less CPU time. For
example, the systemmatrix for Crank^Nicholsonwith three state variables needs
about 640 megabytes of memory.24 This requirement grows exponentially with
the dimension of the problem and quickly becomes an impediment in a realistic
portfolio problem with a large number of state variables. Explicit PDE methods
require far less memory than implicit methods, but they run into a stability pro-
blem, since the discretized equations are sensitive to small errors.
WithMCmethods, the addition of a new state variable increases the number of

operations required linearly, making them particularly suited for large multi-
variate problems. For MCMD, each state variable requires the simulation of a
Malliavin derivative with respect to each Brownian motion. Since MCC does
not require the simulation of any auxiliary process, it dominates in terms of com-
putation time. Unfortunately, it converges at a slower rate thanMCMD, and this
worsens its efficiency properties.
The best way to gauge the relative performance of competing methods is to

compare them in a concrete experiment.We will choose a relatively small-dimen-
sion problem in terms of state variables, making it harder forMCmethods. On the
other hand, we will compute a large number of portfolios, making it harder for
PDE methods.

D. Experimental Setting and Numerical Results

We now illustrate the performance of the various methods for our benchmark
model.We consider a mutual fund with 100 different types of clients who can be
classified in 10 investment horizon classes (1 to 10 years) and 10 risk profiles (risk
aversions from 0.5 to 5.5). For each method, we compute portfolio estimates for
the 100 client configurations selected. Based on this empirical distribution, the
sample root mean square relative errors (RMSE) and the maximal absolute er-
rors (MAE) are recorded, and plotted against computation time.The experiment
is repeated for different combinations ofM,N, and h described below (we consid-
er six combinations in the graphs). Errors are computed relative to a benchmark
calculated using MCMD with 1,000 discretization points per year and 3,000,000
replications. All computations are for initial values close to the long-term
means y05 0.1, r05 0.06, and p0 ¼ 0:03. The boundary conditions for the PDE
methods are as follows. For the Explicit method, we simply impose f( � ,0.3)5 0;
for Crank^Nicholson, we require fr( � ,0.3)50, fr( � , 0)50, fp( � , 0)50, fpp( � , 0.2)50,
fy( � , �1.5)50, and fyy( � , 1.5)50.
In the plots,N is the number of discretization points in time per year andM the

number of replications (resp. discretization points in space) for Monte Carlo

24 This storage requirement can be avoided if, at each time step, we rebuild the matrix sys-
tem from scratch. But, doing so will considerably increase the computation time.
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(resp. PDE) methods.The following legend applies:
} i: Malliavin derivatives (MCMD):N510
 2i�1 andM51000
 22(i�1)

 i: Covariation (MCC):N510
 2i�1,M5100
 23(i�1), and h5 0.1/2i�1
1i: Explicit (PDEFD-E):N510
 2i�1 andM5h5 [My,Mr,Mp]5 2
 2i[1, 1, 1]
* i: Crank^Nicholson (PDEFD-CN): N5 21i and M5h5 [My, Mr, Mp]5
(21i)[1, 1, 1].
Figure 8 shows that, among all methods, MCC does worst, whereas MCMD

does best.This dominance occurs whether one uses MAE or RMSE for compari-
son. If we focus on MCC and MCMD, we see that the dominance of MCMD is
systematic and significant. For the same budget of computation time, errors pro-
duced by MCC are larger by a factor of 10 or more. For the case i5 5, this factor
reaches 100 for RMSE.

Figure 8. Comparison of numerical methods. Efficiency plots: RMSE (root mean
square relative errors) versus CPU time (left panels), MAE (maximal absolute errors) ver-
sus CPU time (right panels).Top: R (risk aversion)5 0.5 to 5 andT (horizon)5 1 to 10. Bot-
tom: R5 5.5 and T51 to 10. } i: Malliavin derivatives (MCMD): N510
 2i�1 and
M51000
 22(i�1). 
 i: Covariation (MCC): N510
 2i�1, M5100
 23(i�1) and h5 0.1/
2i�1. 1i: Explicit (PDEFD-E): N510
 2i�1 andM5h5 [My,Mr,Mp]5 2
 2i[1, 1, 1]. * i:
Crank^Nicholson (PDEFD-CN):N5 2+i andM5h5 [My,Mr,Mp]5 (2+i)[1, 1, 1].
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The comparison of MCMD and PDEFD-E shows that MCMD is more efficient
if the time discretization is sufficiently largeNZ10. PDEFD-E initially performs
poorly, since we are close to the region where it is unstable. Unfortunately, the
PDEFD-CN method is by design such that the convergence does not show in the
graph. Because of its memory requirement (see discussion above), the CPU time
explodes if we choose space discretizations with min {My,Mr,Mp}Z12, since we
have to rebuild the system matrix at each time step.

VIII. Conclusions

In this paper, we have developed a comprehensive approach for the calculation
of optimal portfolios in asset allocation problemswith completemarkets.The ma-
jor benefit of our method, which relies on Monte Carlo simulation, is its flexibil-
ity. Indeed, the approach permits (i) any finite number of state variables, (ii) any
diffusion process for the state variables, and (iii) any number of risky assets. It is
also valid for any preference relation in the von Neumann^Morgenstern class.
This flexibility provides a distinct advantage over alternative approaches to the
problem.
The paper has also derived a number of economic results that can be used as

guidelines for sound asset allocation rules. Naturally, the performance of these
rules will also depend on the empirical sophistication of the underlying model of
financial markets. Clearly, we do not suggest that the models investigated here
are adequate in that respect, although they appear more realistic that the speci-
fications examined in the prior literature. But the important point here is that
the approach that we have proposed offers great generality: It can be easily
adapted to address the asset allocation problem for a large class of financial mar-
ket models.

Appendix A: Proofs

PROOF OF THEOREM 1: Since the Ocone and Karatzas (1991) formula is the founda-
tion of the numerical approach in this paper, we sketch its derivation in the
course of this proof.
It follows, from Cox and Huang (1989) and Karatzas et al. (1987), that optimal

terminal wealth is given by XT5 I(yxT)15max(I(yxT), 0), where I5 [u0]� 1 is the
inverse marginal utility and y satisfies the static budget constraint
E[xTI(yxT)1]5 x.
Thus, optimal wealth at time t is xtXt5Et[xTXT]5E[xTI(yxT)1]. By Ito’s lem-

ma, the volatility of the left-hand side of this equation is �xtXty
0
t þ xtXtp0tst. An

application of the Clark^Ocone formula (see Appendix D) shows that the volati-
lity of the right-hand side equals Et Dt xTIðyxTÞþ

� �� �
. Equating these two expres-

sions and solving for the optimal portfolio yields

xtXtp0t ¼ xtXty
0
ts

�1
t þEt Dt xTIðyxTÞþ

� �� �
s�1t :
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The chain rule of Malliavin calculus for Lipschitz functions (Nualart (1995, pp.
30^31)) gives

Dt xTIðyxTÞþ
� �

¼ IðyxT Þþ þ yxTI 0ðyxTÞ1IðyxT Þ40
� �

DtxT � ZðyxT ÞDtxT ;

where the random variable 1IðyxT Þ40 is the indicator of the set I(yxT)40 and

DtxT ¼ �xT y0t þ
Z T

t
Dtrs dsþ

Z T

t
ðdWs þ ys dsÞ0Dtys

� �
� �xT y0t þHt;T

� �
:

Combining all these elements leads to the Ocone and Karatzas (1991) portfolio
formula:

xtXtp0t ¼ xtXt �Et xTZðyxTÞ½ �½ �yðt; YtÞ0sðt; YtÞ�1 �Et xTZðyxTÞHt;T
� �

sðt; YtÞ�1

¼�Et xTðyxTÞI 0ðyxTÞ1IðyxT Þ40
� �

yðt; YtÞ0sðt; YtÞ�1

�Et xTZðyxT ÞHt;T
� �

sðt; YtÞ�1;

where we used xtXt ¼ Et½xTIðyxTÞþ� and the definition of Z(yxT) to simplify the
first bracket.
When I(y)40, we have � I0(y)5 1/[�u00(I(y))] (from the definition u0(I(y))5 y).

On the event I(yxT)40, the first-order condition for consumption optimization
states that yxT5u0(I(yxT)). It follows thatx.gifX type=XgifX/>

�Et xTðyxTÞI 0ðyxTÞ1IðyxT Þ40
� �

¼ Et
xT

RðXTÞ
XT1XT40

� �
;

where R(x)��u00(x)x/u0(x) is the relative risk aversion of the investor. Similarly,
we can write

ZðyxTÞ ¼ IðyxT Þþ þ yxTI 0ðyxT Þ1IðyxT Þ40 ¼ XT 1�RðXTÞ�1
h i

1XT40:

Substituting these expressions in the portfolio formula and rearranging
gives

p0t ¼
1

RðXtÞ
Et xt;T

XT
Xt

RðXtÞ
RðXTÞ

1XT40
� �

y0ts
�1
t

�Et xt;T
XT
Xt

1�RðXTÞ�1
� �

1XT40
Z T

t
Dtrs ds

� �
s�1t

�Et xt;T
XT
Xt

1�RðXTÞ�1
� �

1XT40
Z T

t
ðdWs þ ys dsÞ0Dtys

� �
s�1t :

Now note that the chain rule of Malliavin calculus gives

Dtys ¼ @2yðs; YsÞDtYs
Dtrs ¼ @2rðs; YsÞDtYs

:

�
ðA1Þ

Furthermore (1) andNualart (1995), Section 2.2, pp. 99^108 (see alsoAppendix D),
imply that DtYs ¼ ðD1tYs; . . . ;DdtYsÞ solves the d systems (one for each of the d
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Malliavin derivatives) of d stochastic integral equations

DktYs ¼DktYt þ
Z s

t
DktmY ðu; YuÞduþ

Z s

t
Dkt

Xd
j¼1

sY�j ðu; YuÞdWju

 !

¼sY�kðt; YtÞ þ
Z s

t
@2mY ðu; YuÞDktYuduþ

Z s

t

Xd
j¼1

@2sY�j ðu; YuÞDktYudWju

 !

¼sY�kðt; YtÞ þ
Z s

t
@2mY ðu; YuÞDktYuduþ

Z s

t

Xd
j¼1

@2sY�j ðu; YuÞdWju

 !
DktYu

for k51,y, d.Writing these equations in differential form gives (11).The initial
condition lims!tDktYs ¼ sY�kðt; YtÞ follows from the integral equation above.

REMARK A-1: The solution of the system of linear equations (11) could also be writ-
ten in the formDtYs ¼ sY ðt; YtÞexp

R s
t dLv

 !
, where thed
d randomvariabledLv

is given by

dLv � @2mY ðv; YvÞ �
1
2

Xd
j¼1

@2sY�j ðv; YvÞð@2sY�j ðv; YvÞÞ
0

" #
dvþ

Xd
j¼1

@2sY�j ðv; YvÞdWjv

and exp
R s
t dLv

 !
is interpreted as the exponential of a matrix (i.e., the expression

for DtYs is shorthand notation for the solution of dDtYs ¼ dLs þ 1
2d½L�s

� �
DtYs

subject to theboundaryconditionDtYt ¼ sY ðt; YtÞ, where [L] is the quadraticvar-
iation process).

PROOF OF PROPOSITION 2: Following Doss (1977), we consider a function
F : ½0; T �
R 7!R, such that @2F ¼ 1

s. Define the new state variable Zt�F(t, Yt).
Using @22F5 @2(1/s)5 � @2s/s2 and Ito’s lemma implies

dZt ¼
m
s
� 1
2
@2sþ @1F

� �
ðt; YtÞdtþ dWt; Z0 ¼ Fð0; Y0Þ: ðA2Þ

Since F has an inverse, denoted by G, we can writeYt5G(t, Zt). Substituting in
(A2) gives dZt5m(t, Zt)dt1dWt where mðt; ZþÞ � m=s� 1

2 @2sþ @1F
� �

ðt; Gðt; ZtÞÞ
is the drift of (A2) evaluated atYt5G(t,Zt). Assumptions (i) and (ii) ensure thatG
andm is continuously differentiable. Assumption (iii) ensures that Theorem 2.2.1
of Nualart (1995) can be applied to conclude that the process Z is in the domain of
the Malliavin derivative operator, that is, Z 2 D1;2.Taking the Malliavin deriva-
tive on both sides of (A2) and using DtYs ¼ @2Gðs; ZsÞDtZs gives

dDtZs ¼ @2mðs; ZsÞDtZsds ¼ @2
m
s
� 1
2
@2sþ @1F

� �
ðs; Gðs; ZsÞÞ@2Gðs; ZsÞDtZsds;

subject to the boundary condition DtZt ¼ 1. Solving this linear SDE for DtZs
and using the relations for derivatives of F and its inverse G produces the
result stated. &
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EXPRESSIONS FOR (21) IN THE BENCHMARK MODEL: Consider the case of dr5 0. Differ-
entiation gives,

@2myðxÞ ¼ � ky

@1syðxÞ ¼0 and @2syðxÞ ¼ � 1
2
eðxÞ syðxÞ

x

@22syðxÞ ¼
1
2
eðxÞ syðxÞ

x
eðxÞ
2x

þ 1
yl þ x

� �
� g20ð1� g10Þ2

yl þ yu

syðxÞ
yl þ x

ylþx
ylþyu

� ��g2y

1� ylþx
ylþyu

� �1�g2y
� �2

(corresponding expressions can be derived for Dtrs). &

Appendix B: Asymptotic Laws of StateVariables Estimators

This appendix reports results from DGR (2001) on the asymptotic laws of esti-
mators of the state variables. Let Zt be the vector of state variables after the Doss
transformation. It satisfies dZt ¼ mðZtÞdtþ

Pd
j¼1 dW

j
t (see equation (A2) in the

univariate case). Using the Euler scheme gives an estimator ZNT of ZT. Our next
theorem characterizes the estimation error.

THEOREM B-1:The asymptotic law of the estimator of the state variables Z is given by
UZN
t;T � NðZNT � ZTÞ ) UZ

t;T, where

UZ
t;T ¼� ÔOt;T

Z T

t
ÔO�1
t; s@mðZtÞ


 1
2

mðZtÞdtþ
Xd
j¼1

dWj
t

 !
þ 1ffiffiffiffiffi

12
p

Xd
j¼1

dBjv þ
1
2

Xd
k; l¼1

@lkmðZsÞds
" #

with ÔOt;v ¼ exp
R v
t @mðZsÞds

� �
andwith [Bj]jA{1,y, d} ad
1 standardBrownianmo-

tion independent ofW.

Theorem B-1provides an explicit expression for the asymptotic law of the esti-
mator and shows that the speed of convergence is of order 1/N.These results can
be contrasted with those obtained when state variables are estimated before
transformation. Applying a Euler scheme to estimate the solution of (1) gives
UYN

t �
ffiffiffiffiffi
N

p
ðYN

t � YtÞ ) UY
t , where

UY
t;v ¼ � 1ffiffiffi

2
p Ot;v

Z v

t
O�1
t; s

Xd
h; j¼1

½ð@sY�j ÞsY�h�ðYsÞdBh; js

with

Ot;v ¼ exp
Z v

t
½@mY ðYsÞ �

1
2

Xd
j¼1

ð@sY�j ðYsÞÞ
2�dsþ

Xd
j¼1

Z v

t
@sY�j ðYsÞdWj

s

 !
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and where the processes [Bh,j]h, jA{1,y, d} are standard Brownian motions inde-
pendent ofW.
In this case, the speed of convergence is 1=

ffiffiffiffiffi
N

p
. Theorem B1 illustrates the in-

crease in the speed of convergence achieved by using the Doss transformation. It
also shows that the limit law is different and involves an exponential of abounded
variation process insteadof a stochastic integral. DGR (2001) provides additional
results for conditional expectations of functionals of state variables such as those
in the hedging terms a(t,Yt) and b(t,Yt).The increased rate of convergence is im-
portant when computing estimators of these conditional expectations based on
an approximation of the dynamic evolution of the state variables.

Appendix C: Calibration of the BenchmarkModel

We focus on a constrained version of our benchmark IR-MPR model (23) and
(24) with g1y50.5, yl5 yu51.5.To calibrate the model, we assume that the approx-
imate discrete-time process is the true time-series model.25 The econometric pro-
cedure described in this section is based on the maximization of the log-
likelihood of the following discrete-time model

rðhÞtnþ1 ¼ rðhÞtn þ krð�rrh � rðhÞtn Þð1þ fr;hð�rrh � r
ðhÞ
tm Þ2ZrÞ þ sr;hðrðhÞtn Þgretnþ1 ; r0 given ðC1Þ

ytnþ1 ¼ytn þ kyð�yy� ytnÞ þ dy;hð�rrh � rðhÞtn Þð1:5þ ytnÞ 1� 1:5þ ytn
3

� �� �

þ syð1:5þ ytnÞ
0:5 1� 1:5þ ytn

3

� �0:5 !g2y

�vtnþ1 ; y0 given;
ðC2Þ

where �rrh ¼ �rrh, sr;h ¼ srhð1�grÞ,fr;h ¼ frh�2Zr, and dy;h ¼ dyh, and {tn: n5 0,y,N}
is a partition of [0,T]. In our estimations, we consider a monthly frequency with
h51/12.
Since the MPR, yt ¼ s�1t ðmt � rtÞ, is unobservable, it must be filtered from the

data.We assume that the stock volatility s is constant. In other words, we esti-
mate the MPR from the conditional mean mt of the stock return series (taken as
the S&P500 index), assuming a simple AR(1) process for the conditional mean.
The estimation period is January 1965 to June 1996. Although in the continu-
ous-time model the same Brownian motion applies to r and ywith a perfect nega-
tive correlation, we leave the correlation coefficient between etn11 and vtn11
unconstrained in the estimation. We obtained the following results:
kr5 0.0027668, �rr ¼ 0:0063138
12, fr5 37.008/12

2
 0.45432, Zr5 0.45432, sr5
0.154055
121�1.1741, and gr51.1741 for the parameters of the IR process, and

25Estimating the parameters of a continuous-time diffusion model based on a discrete-time
approximation of the likelihood function leads to a discretization bias (Lo (1988)). However,
for the monthly estimation of IR processes, Broze, Scaillet, and Zakoian (1995) use an indirect
estimation to correct for the bias and find that it is small for the mean-reversion kr, the mean
�rr, and the variance sr.We, therefore, follow the simpler approach to calibrate the parameters.
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ky5 0.85576, �yy ¼ 0:048786, sy5 2.9417, yl51.5, yu51.5, g1,y50.5, g2,y5 2.8313, and
dy5 3.0708 for those of the MPR process.
To evaluate the impact of nonlinearities, we also calibrated the model

rðhÞtnþ1 ¼ rðhÞtn þ krð�rrh � rðhÞtn Þ þ sr;h
ffiffiffiffiffiffiffi
rðhÞtn

q
etnþ1

ytnþ1 ¼ ytn þ kyð�yy� ytnÞ þ dy;hð�rrh � rðhÞtn Þ þ syvtnþ1 ; y0 given:

The parameter estimates obtained are kr5 0.005, �rr ¼ 0:005
12, sr5 0.03637,
ky5 0.77706, �yy ¼ 0:2675, sy50.2005, and dy5 2.1667.
To assess the robustness of the results assuming a constant s, we used a

GARCH (1,1) model for the stock returns to construct the series for the MPR yt
while keeping an AR(1) specification for the conditional mean of the stock re-
turns.The estimates are not changed much and lead to comparable hedging and
portfolio shares.
For the specification with dividends, the discrete-time model is (C1) for the IR

and

ytnþ1 ¼ytn þ kyð�yy� ytnÞ þ dr;hð�rrh � rðhÞtn Þð1:5þ ytnÞ 1� 1:5þ ytn
3

� �� �

þ dp;h � �pph � pðhÞtn Þð1:5þ ytnÞ 1� 1:5þ ytn
3

� �� �

þ syð1:5þ ytnÞ
0:5 1� 1:5þ ytn

3

� �0:5 !g2y

�vtnþ1 ; y0 given;

pðhÞtnþ1 ¼ pðhÞtn þ kpð�pph � pðhÞtn Þð1þ fp;hð�pph � p
ðhÞ
t Þ2ZpÞ þ sp;hðpðhÞtn Þgpetnþ1 ; p0 given

for theMPR andDPR. Here dr,h5 drh, �pph ¼ �pph, sp;h ¼ sphð1�grÞ, fp;h ¼ fph�2nr, dp,h
5 dph, and {tn : n5 0,y,N} is a partition of [0,T].The estimated parameter values
are kr5 0.007185, �rr ¼ 0:00407
12, fr5 54.45/12

2
 0.3601, Zr5 0.3601, gr5 0.716,
sr5 0.0146
121�0.716, ky50.989, �yy ¼ 0:119, yl51.5, yu51.5, g1,y50.5, g2, y50.659,
dry5 32.47/12, dpy5 �17.46/12, sy50.1626, kp5 0.020, �pp ¼ 0:0032
12, fp5 20.93/
122
 0.244, Zp5 0.244, gp5 0.6315, and sp5 0.005
121�0.6315.
We proceed similarly for the model with four asset classes from 1971 to 1999.

The parameter values are the following.
For the IR: kr5 0.00034, �rr ¼ 0:00520
12, fr517224.987/122
 0.4116, Zr5 0.4116,

gr5 0.5664, sr5 0.00986
121�0.5664.
For the MPRs: k150.1219, k25 0.5946, k35 0.7483, �yy1 ¼ 0:1562, �yy2 ¼ 0:4251,

�yy3 ¼ 0:1669, yl15 yl25 yu15 yu251.5, yl35 yu352.5, d1r5 � 2.7648/12, d2r5
139.00/12, d3r5176.76/12, d1p5 � 0.0372, d2p514.04, d3p5 � 4.44, s115 �0.2032,
s125 0.00497, s135 0.0356, s215 �0.1237, s225 � 0.0306, s235 0.0406, s315
� 0.1199, s325 � 0.493, s335 0.402, g1;y1 ¼ g1;y2 ¼ g1;y3 ¼ 0:5; g2;y1 ¼ 1:2158; g2;y2 ¼
0:5095; g2;y3 ¼ 0:6440:
For the DPR: kp5 0.005, �pp ¼ 0:0332
12, fp5 0, Zp5 0, sp15 �0.00103
121�0.5,

sp25 0.01011
121�0.5, sp35 0.003
121�0.5, gp5 0.5.
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For the volatility of prices and their correlations, we obtained: s05 0.156,
r05 0.37, sn5 0.229, rn150.32, rn25 � 0.1274, s150.106.

Appendix D: Elements of Malliavin Calculus for Finance

The Malliavin calculus is a calculus of variations for stochastic processes de-
fined on aWiener space. It applies to random variables and stochastic processes
that depend on the trajectories of a Brownian motion, that is,Wiener functionals.
In many contexts, one needs to measure the effects of a small variation in the
trajectory of the underlying Brownian motion on this functional. Malliavin cal-
culus gives the necessary tools to perform this computation.
Let (t1, y, tn) be a partition of [0, T] and let F be a random variable of

the form

F � f Wt1 ; . . . ;Wtnð Þ;

where f is a continuously differentiable function.The random variable Fdepends
on the Brownian motionW at a finite number of points along its sample path;
it is called a smooth Brownian functional.
The Malliavin derivative of F is the change in Fdue to a change in the path of

W. Specifically, consider a time t such that t1oyotk�1otrtkyotn and suppose
that we perturbateWs toWs1e for all sZt. The Malliavin derivative of Fat t, de-
noted by DtF, is defined as

DtF � @fðWt1 ; . . . ;Wtk�1 ;Wtk þ e; . . . ;Wtn þ eÞ
@e

����
e¼0

¼
Xn
i¼k

fiðWt1 ; . . . ;Wtk ; . . . ;WtnÞ;

where fi is the derivative with respect to the i
th argument of f.

A simple example is that of a lognormal price process ST5S0exp(aT1sWT),
where a, s are constants. A direct application of the definition gives

DtST ¼ @ST
@WT

¼ sS0exp aT þ sWTð Þ ¼ sST :

In this case, ST depends only on the Brownian motion at timeT. The Malliavin
derivative is then the derivative with respect toWT. This reflects the fact that a
perturbation of the path of the Brownian motion from t onward affects ST only
through the terminal valueWT.
The definition above can be extended to random variables that depend on the

path of the Brownian motion over a continuous interval [0, T]. This extension
uses the fact that a path-dependent functional can be approximated by a
suitable sequence of smooth Brownian functionals. In essence, the Malliavin
derivative of the path-dependent functional is the limit of the Malliavin deriva-
tives of the smooth Brownian functionals in the approximating sequence.
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The space of random variables for which Malliavin derivatives are defined
is called D1;2.26

This extension enables us to define Malliavin derivatives of stochastic inte-
grals in a natural manner. For instance, consider the stochastic integral
F ¼

RT
0 hðtÞdWt, where h(t) is a function of time.We have DtF ¼ hðtÞ, that is, the

Malliavin derivative ofFat date t is the volatilityh(t) of the stochastic integral at
t. It measures the sensitivityof the randomvariableF to the Brownian innovation
at t.
For practical purposes, we need to be able to compute the Malliavin derivative

of a function of a path-dependent random variable. As in ordinary calculus, a
chain rule also applies in Malliavin calculus. Let F5 (F1,y, Fn) be a vector of
randomvariables inD1;2, and suppose thatf is a differentiable function ofFwith
bounded derivatives.Then,

DtfðFÞ ¼
Xn
i¼1

@f
@xi

ðFÞDtFi:

In particular for the Riemann integral with path-dependent integrand F ¼RT
0 xðsÞds where x( � ) is a progressively measurable bounded process, we obtain
DtF ¼

RT
t DtxðsÞds. Similarly, for the stochastic integral with path-dependent in-

tegrand F ¼
RT
0 xðsÞdWs, we have DtF ¼

RT
t DtxðsÞdWs þ xðtÞ.

These formulas help us to identify the Malliavin derivative of a process that
satisfies a stochastic differential equation, as in our portfolio problem. Suppose
that a state variable Yt follows the diffusion process dYt5 m(Yt)dt1s(Yt)dWt,
whereY0 is given. Equivalently, we can write the processYt in integral form as

Yt ¼ Y0 þ
Z t

0
mðYsÞdsþ

Z t

0
sðYsÞdWs:

Using the results above, it is easy to see that the Malliavin derivative DtYs satis-
fies

DtYs ¼ DtY0 þ
Z s

t

@m
@Y

DtYv dvþ
Z s

t

@s
@Y

DtYv dWv þ sðYtÞ:

Since DtY0 ¼ 0, the Malliavin derivative obeys the following linear SDE

dðDtYsÞ ¼
@mðYsÞ
@Y

ðDtYsÞdsþ
@sðYsÞ
@Y

ðDtYsÞdWs

subject to the initial condition lims!tDtYs ¼ sðYtÞ. As for any stochastic differ-
ential equation, the solution (i.e., the Malliavin derivative) can be simulated by
Monte Carlo methods.
It is well known that martingales, in Brownian spaces, can be written as sums

of Brownian motions.This result is the martingale representation theorem. One

26 The Malliavin derivative is defined on the space D1; 2 which is the completion of the
set of smooth Brownian functionals with respect to the norm k F k1;2¼ EðF2Þ

� �1=2þ
E
RT
0 DtFk k2dt

� �� �1=2
:
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benefit of Malliavin calculus is that it gives an explicit expression for the inte-
grand that appears in this representation formula, that is, it identifies the volati-
lity coefficient of the martingale.This is the Clark^Ocone formula, which states
that any random variable F 2 D1;2 can be decomposed as

F ¼ EðFÞ þ
Z T

0
E DtFjF t½ �dWt;

where F t represents the information generated by the Brownian motion
W up to t.
Ocone and Karatzas (1991) extended this formula to processes that are martin-

gales under an equivalent measure (such as the risk-neutral measure) and used
the result to derive their portfolio formula. A full treatment ofMalliavin calculus
can be found in Nualart (1995).
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