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A Monte Carlo Method for Optimal Portfolios
JEROME B. DETEMPLE, RENE GARCIA, and MARCEL RINDISBACHER*

ABSTRACT

This paper proposes a new simulation-based approach for optimal portfolio
allocation in realistic environments with complex dynamics for the state vari-
ables and large numbers of factors and assets. A first illustration involves a
choice between equity and cash with nonlinear interest rate and market price
of risk dynamics. Intertemporal hedging demands significantly increase the
demand for stocks and exhibit low volatility. We then analyze settings where
stock returns are also predicted by dividend yields and where investors have
wealth-dependent relative risk aversion. Large-scale problems with many
assets, including the Nasdagq, SP500, bonds, and cash, are also examined.

The question of optimal portfolio allocation has been of long-standing interest
for academics and practitioners in finance. While the mean-variance analysis of
Markowitz (1952) is still commonly used among portfolio managers, it has been
well understood, since Merton (1971), that long-term investors would prefer port-
folios that include hedging components to protect against fluctuations in their
investment opportunities. Prompted by the seminal papers of Merton (1969,
1971) and Samuelson (1969), studies have explored various aspects of the dynamic
portfolio problem when asset prices follow diffusion processes (e.g., Richard
(1975)). This literature has relied, for the most part, on a dynamic programming
approach to the problem. More recent contributions by Pliska (1986), Karatzas,
Lehoczky, and Shreve (1987), and Cox and Huang (1989) have proposed an alter-
native resolution method based on martingale techniques. In the context of this
approach, an optimal portfolio formula was derived by Ocone and Karatzas
(1991). This expression involves expectations of random variables depending on
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the interest rate (IR) and the market price of risk (MPR) and on unspecified de-
rivatives of these state variables.

While theoretical formulas are available in general contexts, little is known
about portfolio properties and, in particular, about the behavior of the hedging
terms. Even in the context of diffusion models, realistic specifications with sto-
chastic IR and MPR give rise to complex hedging terms that do not have explicit
forms and are difficult to evaluate numerically. As a result, the recent literature
on dynamic asset allocation has devoted attention to state variable specifications
for which closed-form solutions are available (Kim and Omberg (1996), Liu (2001),
Lioui and Poncet (2001), Wachter (2002)), or specifications that are computation-
ally tractable based on dynamic programming techniques (Brennan, Schwartz,
and Lagnado (1997), Brennan (1998), Chacko and Viceira (1999), Brennan and
Xia (2001), Campbell, Rodriguez, and Viceira (2001)), or discrete time models
based on approximated Euler equations (Balduzzi and Lynch (1999), Campbell
and Viceira (1999, 2001), Dammon, Spatt, and Zhang (2001)).! However, even nu-
merical schemes based on PDEs, which offer the most flexibility, become increas-
ingly difficult to implement when the number of state variables increases.
Approximations of the Euler equations, based on a discretization of the state
space, suffer from the same curse of dimensionality.

The method proposed here is based on a refinement of the Ocone and Karatzas
(1991) formula. It relies on the derivation of explicit expressions for the hedging
terms, involving expectations of random variables that can be simulated. The
computation of portfolio shares can then proceed using any simulation-based ap-
proach. This method is flexible and handles realistic portfolio problems in com-
plete market settings with complex dynamics for the state variables. It permits
large numbers of state variables and assets and accommodates wealth-dependent
relative risk aversions.

The paper provides three main contributions. First, we exploit the diffusion
nature of the state variables processes to derive explicit expressions for the hed-
ging components of the optimal portfolio. Hedging demands are expressed as
conditional expectations of random variables that depend on the derivatives of
the drift and variance of the relevant state variables. These formulas hold for
any structure of the underlying processes and the utility function and reduce
the computation of hedging demands to the computation of expectations, as in
traditional option pricing theory. Furthermore, they enable us to establish new
theoretical results about the hedging behavior. Our approach, which computes
the exact solution of the portfolio problem, must be distinguished from recent
simulation-based attempts that compute approximations of the optimal portfo-
lio. For instance, Cvitanic, Goukasian, and Zapatero (2003) derive an approxima-
tion using the covariation between optimal wealth and the uncertainty shocks
and compute the approximate portfolio by simulation. Section 7 documents the
convergence and efficiency properties of this method and shows that it is domi-
nated. Brandt, Goyal, and Santa-Clara (2001) also propose a simulation approach
to compute an approximation of the optimal portfolio, but in a discrete time

1 Kogan and Uppal (2000) approximate continuous time solutions.
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setting. They combine series expansions of the value function with regressions on
powers of the state variables.

Second, we propose a simple transformation of the underlying state variables,
which eliminates the stochastic volatility coefficients in the state variable pro-
cesses. This removes a source of discretization error in simulations of the state
variables and improves the rate of convergence. The scheme also increases the
speed of convergence of simulated trajectories of hedging terms and of any sta-
tistic (such as confidence intervals) of simulated hedging terms.

Third, we provide new results on the economic properties of optimal portfolios.
For tractability reasons, recent applied studies of dynamic asset allocation have
assumed affine models for the state variables® and constant relative risk aver-
sion. In practice, it is well known that the interest rate and the market prices of
risk, which are at the core of portfolio choice models, exhibit nonlinearities in
their drift and diffusion functions. An IR specification with a nonlinear drift is,
for instance, supported by the nonparametric analysis of Ait-Sahalia (1996) and
the estimations performed by Ahn and Gao (1999). Similarly, nonlinear patterns
in the variance of the market price of risk, such as asymmetric responses to up-
ward and downward price movements or sudden changes in level, are present in
the data. Constant relative risk aversion produces demand functions that are
proportional to wealth (see Merton (1971)), which does not appear to capture in-
vestors’ behavior. Researchers have long argued that increasing relative risk
aversion seems more plausible (see Arrow (1975)) and that the preservation of a
minimum standard of living is a fundamental concern of individuals. Moreover,
most personal financial planning advice is wealth dependent. To accommodate
these more realistic settings, we examine multivariate nonlinear models of the
IR and MPR in settings with constant relative (CRRA) or hyperbolic absolute
(HARA) risk aversion.

In our benchmark bivariate model, the IR process has nonlinear mean rever-
sion and constant elasticity of variance (CEV).To model the MPR, we introduce a
new class of processes with hyperbolic elasticity of variance, which constitutes a
natural generalization of the CEV class. Our MPR process exhibits nonlinear
mean reversion and hyperbolic elasticity of variance; a version of this model also
allows for an interest rate effect on the drift of the MPR. More elaborate multi-
variate models with stochastic dividend yield (to capture its predictive power on
stock returns) and multiple assets are also examined. In these contexts, we docu-
ment the magnitude and behavior of the hedging terms as well as their sensitivity
to exogenous parameters such as risk aversion, investment horizon, and initial
values of the IR and the MPR. All our results are based on a representation of
the optimal portfolio evolving from the Ocone—Karatzas formula. This modified
formula emphasizes the role of risk aversion and wealth in the hedging terms and
sheds further light on the portfolio behavior.

A number of lessons can be drawn from our simulations. Hedging demands are
important for asset allocation and tend to increase the demand for stocks. For

2The nonparametric approaches of Brandt (1999) and Ait-Sahalia and Brandt (2001) are
notable exceptions.
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long horizons, intertemporal hedging can easily account for over 60 percent of
the stock demand. The IR hedge, which is positive due to negative correlation
between the IR and stock returns, overwhelms the MPR hedge, which tends to
be negative. This is shown for CRRA in our benchmark model calibrated
to the data. The importance of hedging is also documented for HARA utility
functions (w(X) = (1/(1 — R))(X+B)'! ~¥). When marginal utility is finite at zero
(B>0), the portfolio displays striking differences when the nonnegativity
constraint on consumption is enforced. We also find that hedging terms change
signs at sufficiently low levels of wealth. These results complement Cox and
Huang (1989), who outlined the importance of the constraint for consumption be-
havior. When the investor is intolerant of wealth shortfalls (B<0 and
w(X)= — oo for X< — B), hedging becomes even more relevant for the optimal
allocation. In the limit, as wealth approaches the present value of the floor,
— B, the portfolio is entirely motivated by hedging considerations, even for loga-
rithmic utility.

Hedging components exhibit low volatility relative to mean-variance (MV)
demands. The IR hedge has the lowest volatility, followed by the MPR
hedge and the MV demands. Unlike some earlier studies (e.g., Brennan et al.
(1997)), reasonable interior solutions are obtained and portfolio shares are stable
in market timing experiments. When the dividend yield is added as a predictor to
the IR and the MPR in the drift of the MPR process, its effect on stock demand is
marginal. This can be contrasted with Barberis (2000), who finds strong effects
of the dividend yield on asset allocation when the benchmark model has i.i.d.
returns.

Nonlinearities in the IR-MPR process are not only present in the data, but they
also modify the optimal portfolio in a significant manner. Allocation rules based
on a mean-reverting square-root IR process and a mean-reverting Gaussian MPR
process, calibrated to the data, are biased (biases in excess of 100 percent are
recorded in some cases). The size of this bias increases with the investment hor-
izon and the deviation from unit risk aversion. Since nonlinearities reduce the
fraction of wealth in the stock, they have a taming effect on the optimal portfolio.
This is similar to the effect of parameter uncertainty documented in Barberis
(2000).

We also compute and study the optimal portfolio in settings with large num-
bers of state variables and assets. Simulations of a model with 11 assets and 20
state variables with nonlinear dynamics confirm earlier results: Mutual funds
that provide good hedges against IR risk will give rise to particularly large hed-
ging demands. Guidelines for investing in the “New Economy” are also provided.
When four asset classes, given by the Nasdaq, S&P500, long-term bonds, and
cash, are selected, we find it optimal to short long-term bonds, invest in the
S&P500 and Nasdaq, and maintain a positive cash balance. Moreover, we find
that holding more stocks for the long run may not be optimal! As the horizon in-
creases, it may become advantageous to reduce the total allocation to the S&P500
and the Nasdaq.

A detailed numerical analysis shows the convergence and efficiency properties
of our Monte Carlo estimator, based on Malliavin derivatives in comparison with
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PDE methods (as in Brennan et al. (1997)) and other Monte Carlo estimators
(Cvitanic et al. (2003)). An experiment shows that our method fares best in terms
of root mean square relative errors and maximum absolute errors.

The next section states the portfolio problem. Section II provides the optimal
portfolio formula and discusses its structure. Section III presents the change of
variables and discusses implementation issues. Section IV introduces a bench-
mark model and examines the portfolio properties with CRRA.The HARA case
and multiasset models are studied in Sections Vand VI, respectively. Numerical
methods are compared in Section VIIL. Proofs are in Appendix A; Appendix B re-
ports asymptotic laws of estimators; Appendix C describes the calibration of the
models; Appendix D contains a nontechnical introduction to Malliavin calculus
for finance.

I. The Portfolio Choice Problem

We consider a portfolio choice problem in a complete market with d state vari-
ablesYj, j=1, ..., d, and d sources of Brownian uncertainty W;, i =1, ..., d. State
variables follow the vector diffusion process®

dY, = ¥ (t, Y))dt + oY (t, Y,)dW,. (1)

The investor allocates his wealth between d risky securities and one riskless as-
set (a money market account) with instantaneous riskless rate of return r, = r(z,
Y,).The security prices S;, i = ., d, satisfy the stochastic differential equations

dSi; = Sul(u;(t, ;) — 5i(t7 Yi))dt +ai(t, Y)dWy]; 1<i<d, (2)

where y; is the expected return, ¢; the dividend rate, and g; the vector of volatility
coefficients of security i. Let o denote the d x d-dimensional volatility matrix
whose rows are g, 1 =1, ..., d. We assume that ¢ is invertible and that the market
price of risk

0, =0(t, Y)) =a(t, Y)) *(ult, Y2) — r(t, Y,)1), (3)

where 1 is the unit vector is continuously differentiable, and satisfies the Novi-
kov condition Eexp | fo 0,0, dt ) <oo. Under this condition, the state price den-

sity is
¢ t 1 [t
ftzexp[—/ rs ds—/ Hfdes——/ Qgesds} (4)
0 0 2 Jo

Relative state prices are written &, ,=¢,/¢ =exp(— [} (rs +10.05)ds—

. :
J; 0,dWy).

Suppose that an investor seeks to maximize the expected utility of terminal
wealth by selecting a dynamic portfolio policy composed of the d risky assets

3We assume that the coefficients of (1) satisfy Growth and Lipschitz conditions. Note also
that the state variables are joint solutions of the system (1), that is, state variables can influ-
ence each other.
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and the riskless asset

max UXr) = E[u(Xr)] st (5)

dXt = rtXtdt + XtTC;[(ﬂt — rtl)dt + O'tth], X() =X (6)
X; > 0forallte 0, T

Here X, represents the investor’s wealth at date ¢, x is initial wealth, and =, the
proportions invested in the risky assets at date . The nonnegativity constraint is
a typical no-bankruptcy condition. The utility function is strictly increasing and
concave with limits lim,_, ., #/(x) = 0 and lim,_, yu/(x) < 0. Since we allow for fi-
nite marginal utility of consumption at zero, utility specifications such as those
with hyperbolic absolute risk aversion are permitted.

II. The Optimal Portfolio: The Hedging Behavior

This portfolio problem has been resolved by using a martingale approach that
identifies optimal terminal wealth explicitly (Karatzas et al. (1987), Cox and
Huang (1989)). An application of the Clark—Ocone formula then gives the finan-
cing portfolio. This approach, adopted by Ocone and Karatzas (1991), expresses
the portfolio in the form of conditional expectations of random variables. Given
the generality of their model in which the drift and the volatility of returns are
not modeled explicitly, these random variables are left unspecified. In this sec-
tion, we show that the diffusion nature of the financial market can be used to
derive explicit expressions for these random terms, and hence for the portfolio
shares.

A. The Optimal Portfolio Policy

Our first result identifies the general structure of the optimal portfolio and of
its hedging components. Let R(x) = —u"(x)x/u/(x) be the (atemporal) Arrow—
Pratt measure of relative risk aversion. With this notation, we have the following
theorem.

THEOREM 1: The optimal portfolio shares are given by

;= (a(t, Yt)’)fl {R(IXt) 0(t, Yy)e(t, Xy, Yy) — a(t, X3, Yy) — b(t, Xy, Yt)] (7)

where
I XT -1 T
a(t, Xt7 Yt) = Et ét"TY (1 - R(XT) )1X7,>0/ 'Dﬂ"sds (8)
t t

X _ T
b(t, X, Vi) = E [@TYT(l—R(XT) N0 / (AW + 0 ds)’Dtes} ()
t t
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Xr R(X;)

c(t, Xs, Yy) = B, ét,Tth Xp>0]-

(10)

In these expressions optimal wealth equals X, = E,[¢,, rl(yép) ™1, where I(-) is the in-
verse marginal utility function, I(-)" = max{I(-), 0}, and y solves x = E[EI(yép) T].
The symbol 1x,~ is the indicator of the event {Xp>0}. The random variables D,r
and D05 in (8) and (9) are Malliavin derivatives.* They are given by D0, =
050(s, Ys)'D, Y, and Dyrs = Oor(s, Ys)D;Ys, where D;Ys = (D1 Ys, ..., Dg; Ys) solves
the linear stochastic differential equation

d
d(Dkt YS) = aqu(S, Ys)DthSdS + (Z 820'?(87 Ys)dWJs> Dy Ys, (11)

Jj=1

subject to the boundary condition lim, ., Dy, Ys = o} (¢, Y;). In (1), o is the i
column of the matrix o and 8203-/(3, Ys) is the gradient with respect to Y, of og(s, Ys),
j=1,..d°

The contribution of Theorem 1, relative to Ocone and Karatzas (1991), is to show
that the Malliavin derivatives of the state variables satisfy diffusion processes.
This result is especially important for the numerical implementation of the for-
mula. Indeed, the diffusion evolution (11) implies that simulation methods can be
used to calculate the portfolio shares.

An important ingredient in the portfolio formula is the Malliavin derivatives
(D11Ys, ..., Dg Ys) of the state variables. The random variable Dy, Y; captures the
impact of an innovation in the Brownian motion W, at time ¢ on the state variable
Y, at time s. In essence, this derivative measures the persistence of a shock in
the state variable. It is similar to an impulse response function that quantifies
the sensitivity of a variable Y, to a past uncertainty shock at time ¢.

The first component of the portfolio (7) is a mean-variance term, while the next
two are intertemporal hedging terms (see Merton (1971)).% In this general setting,
the mean-variance demand varies with optimal wealth, since relative risk aver-
sion depends on wealth. Hedging arises as the investor seeks insurance against
fluctuations in the IR (second term in (7)) and in the MPR (third term in (7)). The
interpretation of the second term follows from the presence of the Malliavin de-
rivative D;r;. As indicated above, this derivative captures the effect of shocks at
t on the value of the interest rate r, at the future date s. It measures the IR’s

4The Malliavin derivative is a generalized notion of derivative that extends the usual con-
cept to path-dependent functions. Just as the ordinary derivative measures the local change of
a function for a small change in the underlying variable, the Malliavin derivative measures
the change in a path-dependent function implied by a small change in the path of the under-
lying Brownian motion. See Appendix D for a short introduction to Malliavin calculus.

5We assume that the value function associated with (5) — (6) is finite, V(x)< 0, and that
Epl(yér) € DY2, where D'2 is the domain of the Malliavin derivative (see Nualart (1995) for
complete definitions).

6The optimal portfolio formula extends to the case of intermediate consumption. It also
extends to infinite horizon provided that the Novikov condition is satisfied.
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sensitivity to the underlying risk factors, that is, the Brownian motions W;. Simi-
larly, the third term containing D;6, is an MPR hedge. It is present whenever the
MPRs are sensitive to W;. When (r, 0) are constant or deterministic, these deriva-
tives are null and the hedging terms disappear. When the opportunity set is sto-
chastic, (r, 0) depend on Y and become sensitive to past innovations in the state
variables. The Malliavin derivatives D;rs, D;0; then differ from zero and hedging
matters for the optimal allocation.

When relative risk aversion is constant, the optimal portfolio is given by (7),
where c(¢, X;, Y;) =1 and where the functions a(-) and b(-) are independent of
wealth and equal to

o T
a(t, Yt), = pEt ﬁg‘]/ Dtrst] (12)
1,7l Jt
p T
b(t, Y,) = pE, tiT/ (dW; + 0,ds) D;0s |, (13)
E|¢ ]/

with p = 1 — 1/R constant. These expressions are obtained by using the relation
between optimal wealth and state prices to write a, b in terms of the relative state
price density £, 7. These formulas, which are a restatement of (4.21) in Ocone and
Karatzas (1991), show that, with CRRA, the functions a, b are independent of
wealth. They will be used in some of our numerical computations.

B. The Intertemporal Hedging Behavior

Let us now focus on the hedging behavior of the investor. First, note that an
individual with logarithmic utility (R(X;) = 1) does not hedge. The signs of the
hedging terms will otherwise depend on the signs of the conditional expectations
a(t, X, Y, and b(¢, X;, Y,). For the IR hedge, simple sufficient conditions ensure an
unambiguous behavior.

ProposiTion 1: Fix t € [0, T]. Suppose that (i) (o (t, Yt)')_1 (Dyrs) < 0forall s>t, (P-a.s)
and that (i) R(X7) >1 (P-a.s). Then, intertemporal hedging of interest rate risk raises
the demand for stocks (i.e., the IR hedge is nonnegative). If (i) and (ii) hold for all
te [0, T, the IR hedge boosts the proportion of wealth invested in stocks at all times.

These two conditions support the intuitive notion that individuals that are more
risk averse than a log investor (R(X7)>1) will increase their demand for the mar-
ket portfolio when the IR covaries negatively with the market return (single risky
asset model) in order to hedge IR risk. The first condition holds in a variety of
special cases that are of interest for empirical or theoretical reasons. For in-
stance, it holds if the dynamics of the state variables are independent of each
other (i.e. 1M(t, Y;,) and a¥(e, Y;;) do not depend on Y}, i #j) and

(a(t, Y.)) " (0or(t, Yo' (2, ¥,)) < 0. (14)
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In the single risky asset case, this boils down to negative correlation between the
IR and the risky asset price, which is empirically verified if the risky asset is in-
terpreted as the S&P500 index. The second condition is stated for models in
which relative risk aversion varies with optimal wealth. As long as an investor
displays more risk aversion than a myopic investor, for all possible realizations
of optimal terminal wealth, the condition will hold.

In the next section, we explain how to obtain quantitative estimates of the op-
timal portfolio shares and of the hedging terms using a Monte Carlo procedure
based on Malliavin derivatives.

III. Computation of Portfolios and Hedging Terms

We first outline the numerical procedure employed to implement the portfolio
formula. We then present an alternative procedure based on a change of
variables and document the benefits of this modified approach in a numerical
experiment.

A. A Monte Carlo Portfolio Estimator

To implement the portfolio formula (7), we need to compute the functions a(-),
b(-), and ¢( -), which are conditional expectations of random variables depending
on the paths of the state variables Y; and their Malliavin derivatives D;Y,. An ex-
pansion of the state space enables us to treat these random variables as diffusion
processes that can be simulated along with (Ys, D, Y5).

For 1llustration purposes, we focus on the formulas (12) and (13) for CRRA.The
random variables in the hedging terms form a joint system (Y;, D; Ys, &1, Hy o, Hf o
where H;S = fts D,r,dv and Ht?s = fts(qu + 0,dv)' D;0,. A standard applicatibn
of Ito’s lemma gives

dé s = —&5(r(s, Ys)ds + 0(s, Ys) dW) (15)
dHj , = 0sr(s, Y5)D; Ysds (16)
dH{, = (AW, + 0(s, Ys)ds)' 9:0(s, Y;)D,Ys, (17)

where (Y, D, Y;) solve (1) and (11).

For implementation purposes, M trajectories of the solutions of these equa-
tions are simulated simultaneously. This can be performed using a standard Eu-
ler scheme that discretizes the time interval in N points. The result is a set of M
estimates (YN, iy, iﬁjs’i, HZ’SN’L, Ht(?;N’l), one per trajectory, of the random
variables in the hedges, which can be used to construct M estimates,
( f?’s’i)pHZ’sN’L and ( st’i)”Hte_gN’L, of & HJ, and &) (HJ . Averaging over these M
quantities provides estimates of the functions a(-) and b(-) in the hedges

vy i (&) Loy i () Hy
a(t, Yy) = M N,ivp and  b(t, ¥) = M (&N iy
S E) HEE)

(18)
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The precision of these estimators depends on the number of Monte Carlo repli-
cations M and the number of time discretization points N. As shown in Detemple,
Garcia, and Rindisbacher (DGR) (2001), convergence to the true values is at the
rate 1/v/M as long as the ratio VM /N is held constant. For a single Monte Carlo
replication, the Euler scheme converges weakly at rate 1/ VN for diffusion pro-
cesses.™®

A drawback of this approach is that the processes to be simulated have stochas-
tic components depending on the state variables. As shown in DGR (2001), the
presence of these terms slows down the convergence of numerical estimates to
their true value. In turn, this increases the demands placed on the computational
procedure in order to achieve a given level of accuracy. In the next section, we
propose a simple reformulation of the model, which simplifies (or eliminates)
the stochastic terms in the simulated processes and, therefore, improves the con-
vergence speed to the true values.

B. A Variance Stabilizing Transformation for the Hedging Terms

The key to this reformulation is a change of variables that normalizes the vola-
tility of a process to a constant.” Suppose that a state variable Ysatisfies the one-
dimensional version of (1), where Wis a single Brownian motion. Following Doss
(1977), we introduce a new state variable Z, = F(t, Y,), where the function F :
[0, T]xR—R is selected so that 9xF = 1/o¥ Using Ito’s lemma shows that Z satis-
fies (see Appendix A for details)

dZt = m(t, Zt)dt + th, (19)

where m(t, Z) = u/o — 100 + 01 F](¢, Y) with Y= F (¢, Z). Since the equation
has unit variance, there is no need to approximate the volatility of the process,
and this will improve the convergence properties of the simulation scheme.
Moreover, taking the Malliavin derivative on each side gives

dDiZs = Oom(s, Z3)DyZsds, subject to D;Z; = 1. (20)

This linear equation for D;Z; does not have a stochastic part and is therefore easy
to simulate. Finally, since there is a one-to-one correspondence between Z and Y,
we can express the portfolio formulas entirely in terms of the pair (Z, DtZS).lo
This is accomplished as follows in Proposition 2.

PROPOSITION 2: Suppose that (i) the drift u¥ is continuously differentiable in
(1Y), (ii) the volatility 6" is twice continuously differentiable in (t,Y), and (iii) u*(¢ ,0)
and o¥(t, 0) are bounded for all te[0, T]. Then, for oll t<s, we obtain

"A sequence of random variables ZV converges weakly to Z at the rate 1/VN if
VN(ZN — Z) = U? # 0, where convergence is in probability and U? is the error. See Appen-
dix B for asymptotic laws of state variables estimators and DGR (2001) for further details.

8See Kurtz and Protter (1991).

9Doss (1977) used the transformation to show that an SDE can be solved pathwise.

19 An extension of these results to multiple state variables is available from the authors.
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DY, = c” (s, Y,)DZs with

D,Z, = exp [ /t "o, Zv)dv] . (21)

Proposition 2 shows that (Y;, D, Y;) can be written in terms of (Z;, D;Z;). Since
(21) depends only on Riemann—Stieltjes integrals, of first and second derivatives
of the coefficients of Y, stochastic integrals have been eliminated. With this “var-
iance-stabilizing” transformation, the numerical calculation of the random vari-
able D;Y; is of the same complexity as the numerical solution of an ODE. The
result i1s a faster convergence speed equal to 1/N, which is due to the absence of
a stochastic integral in the ODE.

Implementation can now proceed as in Section III.A. The only modification is
that we simulate the pair (Z,;, D;Z;) to get approximate trajectories
(ZN-1, DN'Z,) and use the inverse function F~(s, Z,) and Proposition 2 to get
estimates YN:i = F~1(s, ZN'i) of the original state variables and (D} "' Y;, &Y/,
H; i Ht()SN9 ") of the random variables in the hedges. 7

C. Simulation Results

We now illustrate the difference in performance between the approaches with
and without transformation, for the approximation of Malliavin derivatives. Sup-
pose that we compute the derivative Dyrr, using each of the two methods. Abso-
lute computational errors are estimated for different discretizations N of the
time interval [0, T] by the strong criterion

. o 1 & i '
&(N, M):EM‘DéVrT—DOrﬂ:MZ’DéV’ rr — Dyrr|, (22)
i—1

where Dyrr is the true value of the derivative and D(I)V rp its approximation, based
on N discretization points using M independent replications. We also compute
the respective errors with and without transformation for the state variable rz
Since the computation of the statistic &(IN, M) requires the true distribution of
the Malliavin derivative, we assume that the IR follows a special case of the gen-
eral mean reverting process with hyperbolic elasticity of variance introduced in the
next section (see (23) with y, = %), with parameters T'=1, x, = 0.004, 7 = 0.06,
o, =0.0309839, and r, = 0.06." To calculate the expectation above, we take 20
batches of 1,000 simulations each. For each batch, an absolute error is estimated.

1Since g, = 2y/k,7, the IR is the square of an Ornstein-Uhlenbeck process Y, = /7. The
true value can then be calculated by using the exact simulation of the transformed state vari-
ables

Yiia = Yie® + B0, VA(Wiin — Wy) + V/[522| Z),

where Z is a Gaussian variate independent of W, a=-%, f= 0,/2,A=T/N, and
592 = e¥A(1/20 — A) + 2(A — 1/%) + 3/20.. This choice of coefficients ensures that Y has the cor-

rect variance and covariance with the increment of the Brownian motion W, ., — W,.
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TableI
Comparison of the Speeds of Convergence of the Discretization Schemes
When the IR follows a MRSR Process

This table compares the mean absolute errors of the Euler discretization scheme (Euler) and of
the discretization scheme based on the variance stabilizing transformation (Euler-Transform)
as the number of discretization points (IV) increases. The errors are reported for the level of the
interest rate (IR) r and of the Malliavin derivative Dr. Errors are computed with respect to the
true distributions of r and Dr, which are known for the mean reverting square root (MRSR)
process chosen. The mean is computed over 20 batches of 1,000 simulations each.

N r Dr
Euler Euler-Transform Euler Euler-Transform

2 0.000115598 5.49255¢e-06 5.81463e-07 3.47457e-07
4 0.000111128 3.37985e-06 3.58341e-07 2.13681e-07
8 8.74541e-05 1.82631e-06 2.33208e-07 1.15422e-07
16 6.50156e-05 9.41716e-07 1.6312e-07 5.9616e-08
32 4.66084e-05 4.7979e-07 1.16983e-07 3.03396e-08
64 3.336e-05 2.40698e-07 8.29213e-08 1.52396e-08
128 2.3761e-05 1.20386e-07 5.97503e-08 7.63041e-09
256 1.68824e-05 5.83759¢-08 4.18739e-08 3.69586e-09
512 1.19618e-05 2.53747e-08 3.00371e-08 1.60477e-09

Estimated absolute errors are then averaged over the batches. Table I reports the
results. Columns 2 and 4 show that the speed of convergence of the Euler scheme
is roughly of order 1/v/N. Columns 3 and 5 illustrate the increase in convergence
speed to 1/N when the transformation is used.

This numerical example illustrates the theoretical result (see Appendix B) and
confirms the improvement in the speed of convergence when the transformation
is applied. The gain is of primary importance in exercises involving the simula-
tion of hedging terms and of optimal portfolios over time, such as market timing
experiments.'?

IV. A Benchmark Model with Nonlinear Coefficients

This section both formulates a new model rich enough to capture salient non-
linear features of the data and examines the properties of optimal portfolios.

A. The Model: Nonlinear Mean Reversion and Elasticity of Variance

The evolution of the investment opportunity set is described by the pair of state
variables (r, f) which satisfy'®

dry = Kk.(T — ;) (1 + ¢, (7 — rt)z'“)dt —a,r;7dWy, 1o given (23)

12When the conditioning state variables are known, estimates of conditional expectations
based on the two schemes, with and without transformation, converge at the same speed (see
DGR (2001)).

3 This is equivalent to a model with two state variables Y = (Y, Y5) in which the equations
(ry=r(t,Y)), 0, =0 (t,Ys)) can be inverted and the state variables expressed as Y, = (f,(r,), f2(0,)).
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d@t = (K()(@ — 0t) + ,ng(rt_’ Ht))dt + Go(gt)th, 00 given, (24)
where
. . 0,40
15 (s, 0;) = 0,(F — r)(0; + 0,) (1 - ( 9;+ 0t>> (25)
. 0, +0 1-y10\ 7%
a0(0;) = ag(0; + 0;)™ <1 — (0;+ 0:) > . (26)

The coefficients (k,, 7, ¢y, 11y, Grs Vrs Ko 0, 10, G, 01, Oy 10, V20) are constants, (ic,., 7, kg,
0, 0,) are positive, and 0 € (—0;, 0,). The Brownian motion Wis unidimensional.

The IR process (23) is mean reverting with constant elasticity of variance
(NMRCEV) given by — 2y,. It also exhibits nonlinearities in the speed of mean
reversion that are captured by the function ¢, (7 — rt)2”’. This specification, with
nonlinear drift and volatility, is motivated by the nonparametric analysis of Ait-
Sahalia (1996). IR processes of the form (23) but with a linear drift—that is, con-
stant speed of mean reversion (¢, = 0)—were used in another context in Chan et
al. (1992); the Cox, Ingersoll, and Ross (1985) model is a particular member of this
class with square-root volatility (¢, =0, 7,=0.5). IR models with quadratic
drift—that is, linear speed of mean reversion (¢,#0 and 7, = %)—were intro-
duced by Ahn and Gao (1999). More general models with ¢,#0 and 5, # % have
yet to be explored.

The MPR process exhibits mean reversion and has an elasticity of variance
given by™

(01+x)177”}

X 0,40,

e(x) =-2 — 1- —_— . 27

(x) 0, +x 710 = V20(1 = 710) L <0!+x)1_yw (27)
0,40,

The left panel of Figure 1 shows that the elasticity of variance is hyperbolic in the
neighborhood of the points — 0; and 0,,. This reflects the convergence of the vola-
tility to zero as 0 approaches — 0; and 0,. Typical volatility patterns are illu-
strated in the right panel. The volatility function is concave with a maximum at
719/ (19 + 720(1 — yw)))l/“*y”’).The parameters 1, 729 control the degree of skew-
ness toward the left or right. The function uj(r;, 0;) in the drift of the MPR cap-
tures an interest rate dependence (empirically a good predictor of the MPR). This
formulation ensures that the MPR stays between the two reflecting bounds — 6,
and 0, at all times. In view of these properties, the process is said to exhibit mean
reversion with hyperbolic elasticity of variance and interest rate dependence in
the drift (MRHEVID). CEV processes, introduced by Cox and Ross (1976) for op-
tion pricing, are a subcase of our model for the MPR obtained by setting

“The elasticity of variance, e= — (Jv(x)/dx)/(v(x)/x), measures the relative change in the var-
iance v(x) = 6%(x). The elasticity of variance is said to be hyperbolic when & ~ k(1 + mx) " with
k, m and n>0 constants.
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Figure 1. The hyperbolic elasticity of variance (HEV) process. Elasticity of variance
(left panel), volatility function (right panel). Parameters: 0; = 0.3, 0, = 0.7, y19 = y29 = 0.5.

0; = y99 = 0. General specifications with hyperbolic absolute elasticity of variance
(0;#£0 and ygy#0) are new.

The bivariate specification (23) and (24) for the IR and the MPR is new in the
literature. While modeling directly the two processes of interest, our structure
captures important nonlinearities in the mean and volatility of these variables,
which are present in the data. This general specification will enable us to assess
the importance of those nonlinearities for portfolio decisions, a question that has
not yet been explored.

The transition from the model with state variables Yto the model (23) and (24)
with state variables (r, 6) is immediate. Proposition 2 applies, substituting the
relevant expressions for the derivatives of the drift and volatility in (21). These
derivatives are given in Appendix A.

B. Economic Properties of Optimal Portfolios

We implement our procedure for the benchmark model with CRRA and a single
risky stock with constant volatility. Details of the calibration and parameter va-
lues are in Appendix C. Initial values are ry = 0.06 and 6, = 0.10, while the volati-
lity of the stock is set at its historical average 0.2. Through most of the paper
simulations, we use a three-day increment and 50,000 paths with variance reduc-
tion by antithetic variables (M = 25,000, 2 = 1/100).

B.1. Optimal Portfolios and Hedging Components

Figure 2 (see also Table II) illustrates the behavior of the optimal portfolio and
its components relative to the risk aversion and the investment horizon. Risk
aversion varies from 0.5 to 5; the horizon from 1 to 10 years. As expected, the frac-
tion of wealth in the stock is a decreasing (increasing) function of risk aversion
(the horizon). The hedges, however, display very different behavior. The MPR
hedge is mildly humped, decreasing-increasing, relative to risk aversion, while
the IR hedge is increasing in that variable. Both hedges increase in absolute
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Figure 2. Effects of investment horizon and risk aversion on total stock demand
and hedging demands. Interest rate hedging (IRH) demand (top left), market price of
risk hedging (MPRH) demand (top right), total hedging demand (bottom left), total de-
mand (bottom right).

value as the horizon increases. As noted before, hedges change signs as risk aver-
sion exceeds or falls short of 1, illustrating the knife-edge behavior of logarithmic
utility. For investors that are more risk averse than the Bernoulli investor, the
negative values of the MPR hedge stem from the positive correlation between
the stock return and the MPR. The additional risk is hedged by reducing the
stock demand. Similarly, the IR hedge tends to boost stock demand, since it cov-
aries negatively with the stock return. Note that the combination of the two
hedges tends to be positive: hedging increases stock holdings relative to a pure
mean-variance investor. In fact, the positive net effect increases with the horizon,
when risk aversion exceeds 1. This dominance of the IR hedge reflects the stron-
ger persistence of IR shocks (slower mean reversion).

Figure 3 displays the behavior relative to the levels of the IR and MPR for a risk
aversion of 3 and an investment horizon of five years. Note that the fraction in-
vested in the stock is an increasing function of the MPR and is almost insensitive
to the IR. As 6y increases, the IR hedge stays flat (top left panel), while the MPR
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Table IT
Shares of the Portfolio in the Stock and Hedging Components
This table reports the optimal share of the portfolio invested in the stock (r), the interest rate
hedge (IRH), and the market price of risk hedge (MPRH) for different risk aversions (R) and
horizons (7). Computations are performed in the bivariate benchmark model with IR and
MPR state variables and two sources of uncertainty. The IR process is mean reverting with con-
stant elasticity of variance and exhibits nonlinearities in the speed of mean reversion.The MPR
process exhibits mean reversion with hyperbolic elasticity of variance and interest rate depen-
dence in the drift. The values of the parameters for the processes are given in Appendix C.

R T
1 2 3 4 5 10
0.5 T 1.0398 1.0489 1.0440 1.0354 1.0237 0.9627
IRH —0.0196 —0.0388 —0.0577 —0.0763 —0.0946 —0.1819
MPRH 0.0594 0.0876 0.1017 0.1117 0.1184 0.14469
1 b3 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
IRH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MPRH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 T 0.2529 0.2594 0.2670 0.2754 0.2837 0.3236
IRH 0.0098 0.0195 0.0292 0.0387 0.0481 0.0939
MPRH —0.0069 —0.0101 —0.0121 —0.0133 —0.0144 —0.0202
4 n 0.1343 0.1462 0.1590 0.1715 0.1845 0.2445
IRH 0.0147 0.0293 0.0438 0.0582 0.0724 0.1413
MPRH —0.0054 —0.0081 —0.0099 —0.0117 —0.0129 —0.0218

hedge is convex (top right panel). These effects, however, are of second order re-
lative to the increase in the mean-variance component of the stock demand. When
ro increases, the IR hedge becomes more positive, while the MPR hedge exhibits
little variation. Combining these two effects increases total hedging and stock
demands. For typical values of the MPR (between 0 and 40 percent) and moderate
IR levels (in excess of two percent), the positive IRH overwhelms the negative
MPRH and the total hedging demand is positive.

B.2. Market Timing Strategies: Volatility and Lifecycle Effects

To assess the importance and stability over time of the hedging demands, we
perform two market timing experiments. The first consists of drawing trajec-
tories of the underlying state variables and computing the portfolio components
along these trajectories. The second experiment simulates the optimal portfolio
for very long horizons using actual market data.

Results for the first experiment are reported in Figure 4. A typical trajectory of
the pair (r, 0) is drawn in the top panels. The IR varies between 5.4 percent and 6.3
percent; the MPR takes values between 0.02 and 0.20. The bottom left panel illus-
trates the stock demand and the MV component behaviors for an investor with
risk aversion of 4 and a fixed horizon of five years. For the trajectory drawn, the
proportion invested in the stock evolves between four percent and 28 percent.
Close inspection of the graph, however, shows that changes superior to 20 per-
cent in the portfolio share are usually spread over periods of six months or more.
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Figure 3. Effects of ry (initial level of interest rate) and 6, (initial level of market
price of risk) on hedging demands and total demand for stocks when rye [0, 10 per-
cent] and 0ye[ — 0.2, 0.6].

There are also long stretches of time, in excess of a year, over which the stock
share varies within a 10 percent interval.

The bottom right panel, which shows the respective contributions of the IR
hedge, the MPR hedge and the sum of the two hedges, sheds further light on this
issue. First note that the IR- hedge is remarkably stable over time. It experiences
very small fluctuations and decreases slowly toward zero due to the maturity ef-
fect of the fixed horizon; it also remains positive throughout the period.The MPR
hedge is negative and exhibits stronger volatility, which is not surprising since it
is sensitive to the MPR level, which is more volatile. Within intervals of a year
though, its fluctuations rarely exceed 10 percent. Again a trend toward zero is
observed due to the fixed horizon. Both hedges work in opposite directions and
partly offset each other. The net hedging correction is about 5.5 percent at the
beginning of the investment horizon, thus boosting the stock demand. It then
slowly converges toward zero while remaining positive. The net hedging correc-
tion inherits the stability of its components: its fluctuations rarely exceeds two
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Figure 4. Market timing: hedging demands and total demand along trajectories of
interest rate and market price of risk. Top panels plot typical trajectories of the IR and
MPR processes. Bottom panels graph the fraction invested in the stock and the mean-var-
iance demand (left) and the hedge components (right). R = 4; T'=5.

percent over periods of a year or longer. Over the whole five-year period, the net
hedge varies between zero percent and six percent.

We conclude from this (representative) experiment that intertemporal hedges
are remarkably stable over time in the sense that they exhibit low volatility. The
variation in the total stock demand, which is observed in Figure 4, stems primar-
ily from the variation of its mean variance component.

Our second experiment examines the actual behavior, based on market data, of
the portfolio over time for an investor with long horizon of about 30 years at the
beginning of the period. Hedging demands and portfolio positions are computed
using our model along the realized trajectory of the IR and the MPR in the last
31.5 years (our estimation sample). Based on these data, we compute, for each
month of the sample, the optimal share of the stock in the portfolio with and
without hedging for an investor with a risk aversion of 4. As Figure 5 shows, in-
tertemporal hedging increases the optimal share to a reasonable level of about 40
percent at the beginning of the investment horizon to roughly 5 percent at the
end, with an average holding of 30 percent. This is in sharp contrast with the
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Figure 5. Market Timing: hedged and unhedged demands with actual data over a

long horizon (1965 to 1996). Share of stock in portfolio with (top) and without (bottom)
hedging. Fixed horizon of 31.5 years (our sample).

myopic mean-variance optimal share, which varies substantially around an aver-
age level of about 10 percent. Note also that the hedging investor will short the
stock only six times during the investment period compared to 73 times for an
unhedged investor. Naturally, the observed increase in stock holdings comes
from the positive IR hedge. From this realistic situation, we also conclude that
intertemporal hedging has a fundamental impact when the investment horizon is
long. As in the previous experiment, it tends to stabilize the overall stock de-
mand.

B.3. Stochastic Dividends

In the last decade, substantial evidence has accumulated to suggest that the
dividend—price ratio (DPR), denoted by p, is a relevant factor which influences
the evolution of the MPR. A natural question is whether the statistical relevance
of the DPR translates into a significant impact on the portfolio allocation.

To examine this issue, we consider a generalization of our benchmark model in
which the triplet (r, 0, p) satisfies

dr; = p,(r))dt — o,r;"dW;, 1o given (28)
d@t = [,Llﬁ(@t) + ,ug(rt, 9,5) + ,uz(pt, Qt)]dt + 09(9t)th, 90 given (29)

dp; = w,(p)dt — oppIPth, ro given, (30)

where

w0 = dytp -~ por+ 09 (1~ (541)) (31)
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Table ITI
Dividend Effect—Portfolio Composition with Dividend Predictability

This table reports the optimal share of the portfolio invested in the stock (r), the interest rate
hedge (IRH), and the market price of risk hedge (MPRH) for different risk aversions (R) and
horizons (7). Computations are performed in the trivariate model with IR, MPR, and DPR (di-
vidend-price ratio) state variables and three sources of uncertainty. The IR process is mean
reverting with constant elasticity of variance (CEV) and exhibits nonlinearities in the speed
of mean reversion. The MPR process exhibits mean reversion with hyperbolic elasticity of var-
iance and interest rate dependence in the drift. The DPR follows a nonlinear mean-reverting
CEV process and has a linear effect on the drift of the MPR. The values of the parameters for
the processes are reported in Appendix C. For R = 1, the portfolio composition is the same as in
Table II.

R T
1 2 3 4 5 10

0.5 n 1.0437 1.0549 1.0530 1.0450 1.0364 0.9749
MV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
IRH —0.0183 —0.0364 —0.0542 —0.0719 —0.0895 —0.1753
MPRH 0.0619 0.0912 0.1072 0.1170 0.1259 0.1502
2 o 0.2523 0.2577 0.2651 0.2720 0.2806 0.3189
MV 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
IRH 0.0092 0.0184 0.0276 0.0367 0.0459 0.0914
MPRH —0.0069 —0.0106 —0.0125 —0.0147 —0.0152 —0.0226
4 o 0.1332 0.1438 0.1558 0.1674 0.1799 0.2370
MV 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
IRH 0.0138 0.0276 0.0414 0.0552 0.0690 0.1378
MPRH —0.0056 —0.0087 —0.0106 —0.0128 —0.0141 —0.0257
1p(P) = 1p(B = pO) (1 + ¢,(B — p)™™), (32)

and u,(r,) is also given by the function (32) substituting r for p.

In this specification, the DPR follows a nonlinear mean-reverting CEV process
and has a linear effect on the drift of the MPR. In other respects, the IR and MPR
processes are the same as in the benchmark case. To calibrate the model with
stochastic dividends, we follow the same approach as for the benchmark case.
The parameter values are in Appendix C. It should be noted that the calibrated
parameters show strong effects of the IR and DPR on the drift of the MPR. All the
other parameters remain close to the values obtained for the benchmark model
with two state variables only.

Table III displays the optimal portfolio when stochastic dividends are ac-
counted for. Strikingly, dividends appear to have very little effect on the portfolio
composition over the range of risk aversions and horizons considered (compare
with Table II). The intuition for this result stems from the fact that DPR does
not have a direct effect on the state price density and optimal terminal consump-
tion. Instead, it has an indirect effect through the drift of the MPR process,
which implies a second order effect on the state price density and optimal con-
sumption. The negligible effect of stochastic dividends stands in contrast with
Barberis (2000), who found a strong effect of predictability through the DPR on
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the portfolio policy. Note, however, that his reference model had 1.1.d. excess re-
turns. As a result, adding the dividend yield as a predictor led to a considerable
increase in predictive power and had a significant impact on the portfolio shares.
In our benchmark model, predictability is already included through mean rever-
sion and through the IR, which is a strong predictor of excess returns and the
MPR. The additional predictive power of the dividend yield is, therefore, not as
strong as in Barberis (2000).

B.4. The Importance of Modeling Nonlinearities

One important question concerns the relevance of a nonlinear process, such as
the NMRHEYV model, for asset allocation purposes. Even if this model provides a
better empirical description of the data, it is by no means assured that portfolio
rules will be significantly affected by the nonlinearities present in the data.

To address this issue, we examine the properties of the optimal portfolio ob-
tained in each of the models. On one hand, we consider the NMRCEV-NMRHE-
VID model, described above, calibrated to the data. On the other hand, we
examine a model in which the IR process is mean reverting with square-root vo-
latility (MRSR) and the M PR follows a mean-reverting Gaussian process with a
linear interest rate dependence in the drift (MRGID). Specifically, our second
model is

dr, = k,(r — r,)dt — .12 dW, (33)

do, = (1c9(0 — 0,) + 6,(F — r;))dt + aod W, (34)

where «k,, 7, g, and kg, 0, §,, 6, are nonnegative constants. Clearly, the MRSR—
MRGID model is a subcase of our general setting obtained by setting some para-
meters equal to zero. Model parameters are calibrated to the data using the ap-
proach in Appendix C. Parameter values are reported in the same appendix.

The absence of a nonlinear term in the drift of the IR implies that we under-
estimate the speed of mean reversion in periods of high interest rates. This non-
linear term captures the faster mean reversion when the IR becomes large, as
was the case at the beginning of the 1980s. Without this term, the mean reversion
is as slow in periods of high and low interest rates, and this tends to increase the
demand for the risky asset due to hedging considerations.

As for the MPR, a linear and constant diffusion coefficient leads to an under-
estimation of the corresponding hedging term. The volatility of the MPR is time
varying and evolves in a nonlinear fashion. It is shown here that modeling this
nonlinear behavior is important for the optimal portfolio.

Figure 6 displays the risk aversion effects for a fixed horizon of five years. The
top panels show that the MRSR-MRGID specification overestimates (underesti-
mates) the IR hedge and underestimates (overestimates) the MPR hedge when
risk aversion exceeds (falls below) 1. The overall hedging demand and the total
demand for the risky asset are always biased high.This follows since the IR hedge
dominates when R>1, while the MPR hedge tends to dominate when R<1. The



422 The Journal of Finance

06
015 MRSR-MR ?LD_ N
o1
04 '.'
o g . MRSR-MRGID
03|
c :': & ozf
= 2wt /i NMRCEV-NMRHEVID <
NMRCEV-NMRHEVID
0.1 l
018 _.! .......................................
-0.‘:: 0.1 -
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
Risk aversion Risk aversion
0.3% 14
0.3 1_2_.‘
0.2 ', “8 1 ..‘:".
02} & g 08
5 3 MRSR-MRGID 3
0.15| > o
EN N e 8" MRSR-MRGID
o NMR(_._‘,_E.-V“-"NMRHEVID D s
o . - / " e . v
NMRCEV-NMRHEVID
\(’15 1 15 2 25 :! as 4 45 5 '(').5 1 15 2 25 3 35 4 45 5
Risk aversion Risk aversion

Figure6. The effects of nonlinearities on total stock demand and hedging de-
mands. IRH (top-left), MPRH (top-right), hedging demand (bottom-left) and total demand
(bottom-right).

magnitude of the bias is important. For a risk aversion of 4, the optimal invest-
ment in the risky asset is overstated by about 42.67 percent (25.58 percent instead
of 17.93 percent), the IRH by a factor of 2.5 (17.10 percent instead of 6.84 percent),
and the MPRH is understated by a factor of nearly 3 (—4.02 percent instead of
— 141 percent). Although not reported here, we have also examined the behavior
of the bias as a function of the investment horizon. Our experiments have shown
that the size of the bias increases with horizon.

V. Hyperbolic Absolute Risk Aversion (HARA Utility)

Utilities with constant relative risk aversion have become a central feature of
the workhorse models in finance. Their appeal is partly based on the fact that the
demand functions are proportional to wealth (see Merton (1971)), which improves
the tractability of asset pricing or asset allocation models. From an economic
perspective though, it is apparent that this property is very strong and unlikely
to provide a good description of individual behavior. Some prominent economists
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(e.g., Arrow (1975)) have, in fact, argued that increasing relative risk aversion is a
more compelling assumption. Others have suggested that the preservation of a
minimum standard of living is a fundamental concern.

Utility functions in the HARA class can be used to model these aspects. They
take the form

1
_1—R(
where R>0 and B are constants. The relative and absolute risk aversion coeffi-
clents are, respectively, R(X) = RX/(X+ B) and R%X) = R/(X+ B). Absolute risk
aversion is decreasing and convex with an asymptote at X = — B.When B> 0, re-
lative risk aversion is strictly increasing and concave, with an asymptote at
X = — B.When B<0, relative risk aversion is decreasing and convex in wealth
and becomes infinite as wealth approaches the subsistence level — B.”® In this
case, the utility function displays intolerance for wealth levels below the floor
— B.This specification is well suited to analyze portfolio allocation when a mini-
mum terminal balance is sought. Portfolio insurance, goal constraints, and sub-
sistence constraints are examples of problems in this category.

u(X) X+B)" %, (35)

A. Binding Nonnegative Wealth Constraint

Although more compelling from an economic point of view, the generalized
power utility has not seen much use because of its lack of tractability. One diffi-
culty, highlighted by Cox and Huang (1989), is that consumption is nonlinear
with respect to wealth at sufficiently low wealth. This is a consequence of the
consumption constraint, which binds with positive probability and modifies the
nature of the solution in a critical way. While Cox and Huang solve for the con-
sumption policy in this setting, their analysis provides only limited information
about the optimal portfolio. This is where our approach can prove useful, since it
is ideally suited to study cases where nonlinearities matter.

The optimal portfolio is now given by (7)-(10) with R(X) = RX/(X+ B).Table IV
reports the portfolio components, for a set of values of X and R, when the nonne-
gativity constraint on terminal wealth is accounted for and in the absence of a
wealth constraint. Computations are performed for the three-state variables
model with DPR effect of Section IV.B.3.

The table shows that the constraint has a dominant effect at low levels of
wealth. In the absence of a constraint, the fraction invested in the stock, as well
as the mean variance and hedging terms, explode. With a nonnegativity con-
straint, the behavior is much more reasonable. For instance, with R =1, the IR
hedge increases from — 50.25 percent when wealth is 10 to — 55.51 percent when
wealth falls to 1.The corresponding numbers in the absence of the constraint are,
respectively, —102.65 percent and — 1027.16 percent! These results underscore
the importance of accounting for wealth constraints for sound asset allocation
rules.

15To ensure that preferences are defined for all X>0, we set w(X+B)= — o for X< — B,
when B<0.
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Table IV
HARA Utility— Portfolio Components with a Wealth Constraint (B = 100)

This tables reports the optimal portfolio components: the total share = invested in the stock, the
shares represented by the mean-variance (MV) component, the interest rate hedge (IRH), and
the market price of risk hedge (MPRH). The utility function is of the HARA type, with relative
risk aversion coefficient R(X) = RX/(X+ B).The shares are reported for a set of values of wealth
(X) and risk aversion (R), when the nonnegativity constraint on terminal wealth is accounted
for and in the absence of a wealth constraint. Computations are performed in the trivariate
model with IR, MPR, and DPR state variables, and three sources of uncertainty. The IR process
is mean reverting with constant elasticity of variance (CEV) and exhibits nonlinearities in the
speed of mean reversion. The MPR process exhibits mean reversion with hyperbolic elasticity of
variance and interest rate dependence in the drift. The DPR follows a nonlinear mean-reverting
CEV process and has a linear effect on the drift of the MPR.The values of the parameters for the
processes are reported in Appendix C.

R X
1 5 10 100
constraint  with without  with without  with without  with without
1= 27723 184078  2.0739 4.0807 1.7417 2.2853 0.6793 0.6793
MV 21378 276850  1.9535 5.9346 1.8741 3.2163 0.7722 0.7722
IRH —0.5551 —10.2716 —0.5182 —2.0536 —0.5027 —1.0265 —0.1029 —0.1029
MPRH 1.1896 09944  0.6386 0.1998 0.3704 0.0955 0.0099 0.0099
2 n 2.3485 8.6882  1.5648 1.9872 1.1324 1.1545 0.4066 0.4066
MV 2.0322 13.8879  1.8145 2.9693 1.5144 1.6084 0.3860 0.3861
IRH —0.5356 —5.0905 —04875 —0.9400 —0.3854 —0.4227 0.0421 0.0421
MPRH 0.8519 —0.1093 0.2379 —0.0420 0.0034 —0.0312 —0.0216 —0.0216
47 1.9746 4.2165  1.0366 1.0469 0.6460 0.6461 0.2846 0.2846
MV 1.9201 6.9059 14324 14853 0.8051 0.8051 0.1930 0.1930
IRH —0.5100 —24456 —0.3564 —0.3774 —01180 —0.1180 0.1153 0.1153
MPRH 0.5645 —0.2438 —0.0393 —0.0609 —0.0410 —0.0410 —0.0237 —0.0237

Perhaps more striking is the change in the signs of the hedges as wealth be-
comes low or as the coefficient R approaches one. To understand this property,
suppose a unit increase in the state price density {rand consider its impact on
the cost of optimal consumption in a given state, éx{(yé7) ~ ¥ — B)*. Taking the
derivative with respect to {7 shows that the marginal cost of consumption is po-
sitive (negative) if and only if

1

(2r) /% = B) ) 1m0 = Kl - R) (yér) ™" - B} L0 (36)

1s positive (negative). The first term, ((yép) YR _ B)", is the additional cost of main-
taining consumption (income effect); the second term, —(1/ R)(yéT)fl/ Ry Xp>0, 18
the cost reduction induced by the response of optimal consumption (substitution
effect). When B = 0 (i.e., CRRA), the net effect is driven by whether risk aversion
exceeds, or falls below, 1. This was the case studied in the previous section. Sup-
pose now B> 0.When initial wealth is low, this marginal cost is dominated by the
negative substitution effect. At large values of wealth, and when R >1, the posi-
tive income effect dominates. When R approaches 1, and for all values of wealth,
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Figure 7. Intolerance for wealth shortfalls (portfolio insurance). Portfolio composi-
tion with a HARA utility function, u(X) = (1/(1 — R)(X+B)' £, with B= —10,000, R =1,
and T'=10. Share in stock and MV component (left panel), IRH, MPRH, and sum of the
hedges (right panel).

the net effect is negative. Since the investor, ultimately, seeks insurance against
the impact of shocks on the cost of optimal consumption, it is clear that the rela-
tive strength of the two effects determines the signs of the hedges. In particular,
as wealth decreases to 0 or R decreases to 1, we expect to see the IRH switching
from positive to negative and the MPRH from negative to positive. This is pre-
cisely the behavior displayed in the table.'®

Lastly, when wealth increases, the portfolio structure converges to that under
constant relative risk aversion. This reflects the vanishing likelihood of a binding
constraint. In the limit, the preference ordering of random terminal wealth is
unaffected by the constant B.

B. Intolerance for Wealth Shortfalls (Portfolio Insurance)

When B <0, preferences display intolerance for terminal wealth outcomes be-
low the benchmark — B.The presence of this floor will induce a modification in
the portfolio behavior as the investor seeks insurance against intolerable out-
comes.

Figure 7 displays results for the three-state variables model with DPR effects
and R = 1. The fraction invested in the stock market, the mean-variance (MV)
component, and the MPRH are increasing functions of wealth, while the IRH is
decreasing in wealth. As wealth approaches the present value of the floor, the
investor adopts a more conservative policy: The fraction invested in the stock
decreases to a positive value. This behavior may seem puzzling, since the MV

6 When wealth is unconstrained, B has a marginal effect on the MPRH, since
flT D,05(dW; + 0sds) is a martingale under the risk neutral measure. The sign of the MPRH
is then driven by the first term in the marginal cost of consumption, provided R is large en-
ough. This explains the negative MPRH in Table IV at low wealth and R = 2, 4.
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component vanishes (recall that the MV demand is inversely related to relative
risk aversion which approaches infinity). The explanation lies in the behavior of
the hedges. Even at low levels of wealth, the investor still cares about the present
value of the floor and will seek to hedge against its fluctuations. This motivates
hedging demands against the impact of IR and MPR innovations on the present
value of the floor. In effect, the limiting portfolio synthesizes the floor — B at
date T

At the other extreme, for large values of wealth, the floor becomes less relevant.
In the limit, the investor behaves as if relative risk aversion were constant, and
all the portfolio components converge to those of the limiting CRRA portfolio.
With R =1, the hedging terms eventually vanish.

VI. Investing in a Multiasset World

This section is devoted to large-scale models with multiple assets and state
variables. We first outline the setting, then examine a particularly relevant model
with old and new economy stock funds.

A. A Large-scale Model with Nonlinear Dynamics

Suppose that there are d Brownian motions and d+1 securities: d — 1 stock
portfolios, one mutual fund composed of long term pure discount bonds, and
the riskless asset. There are 2d state variables: one interest rate, d market prices
of risk, and d — 1 state variables (dividends) affecting the evolution of the market
prices of stock risks.

The dynamics of the interest rate (r) and the price of the bond portfolio (Sp) are

dry =, (r)dt — o.rrd Wy, (37)

dSbt = Sbt[(rt + Ubglt)dt + Udelt], (38)

where 1,(r;) is given by (32) substituting r for p. Stock portfolios’ prices (S, ...,
Sq_ 1) satisfy

dSit + Supirdt =Sy (Vt +oi (Pm@lt +. 4 pi0i+ /1 - p?6i+1t> ) dt
(39)
+ Sj0; <pi,1dW1ﬁt +...4+ pi,idWiyt +4/1— P?dWH—l,t)

fori=1, ..., d—1, with p? =3 p?k The constant — p;; is the correlation be-
tween IR changes and the return d i.The correlation between funds i and j,
i<jis p1pjq+ .-+ piipji +1/1— pip; i1 The coefficients o;, p; with i, k=1,
..., d—1, are constant.

In this setting, W; is IR risk and W, ...,W; represent risk factors affecting stock
returns. More specifically, Wy captures the incremental risks affecting fund 1
after accounting for IR risk (i.e., fund 1 returns depend on (W;, W5)). Similarly,
W41 is the incremental factor impacting the returns on fund k after the first
factors have been accounted for (i.e., fund k returns depend on (Wi,..., W..9)).
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Since there are d+1 securities and d Brownian motions, all risks can be hedged
away. The bond portfolio provides a perfect hedge against IR risk.

To compute the optimal portfolio shares, we assume that (0, p) follow a joint
diffusion process, which satisfies the assumptions of Theorem 1. The structure
of the optimal portfolio is intuitive. First, note that fund d — 1 is the only one ex-
posed to W risk. Since other sources of risk (i.e., Wi,...,.W;_1), can be hedged
away, the demand for fund d — 1 is entirely driven by the risk-return characteris-
tics associated with W,. Therefore, the demand for fund d — 1,

1 1
[— Oa: — aq(ry, 0¢, pt) (40)

g-1,t = ——  ——
Od—14/ 1- .0(21_1 E

includes a mean-variance component and an intertemporal hedge against fluc-
tuations in the opportunity set induced by W; risk (term involving a4(r, 0;, p;))-
In effect, fund d — 1 provides the best hedge against this particular source of risk.

However, the structure of the portfolio shares for the other funds is different.
Indeed, since the returns on fund d — 1 also depend on Wy, ..., W;_4, the position
taken in fund d — 1 induces an exposure to Wpequalto 64 _1pq 1, x7q 1, fork =1,
..., d—1. The investor uses the other funds to hedge these induced exposures
away. For example, fund d — 2 serves to eliminate the exposure to W, _ risk,
Od—1Pd—1, d—1Td—1, +- Its demand is given by

1 1 _ 0d-1Pd-1,d—
Ty vy = e {R Og-11 — @q—1(rs, Ot,pt)] - ;”dfl,p (41)
0a-21/1—pi_, 0q-24/1 — P s

This explains the last component in 7; 2 ;. The remaining demand for fund d — 2
has the usual structure, namely a mean-variance term and an intertemporal
hedge against fluctuations induced by W, _; risk (term with ay_1 (1, 0;, p;)). Simi-
larly, fund & serves to hedge away the exposure to Wy, risk induced by the de-
mands for funds £+1,...,d — 1. The remaining demand components are the mean-
variance term and an intertemporal hedge against W, risk. This structure is
common to all funds’demands, including the bond fund, which is given by,

11 1 (&
Mo = Eelt — ay(ry, Gt’Pt)} ~ (Z Gjpj,ﬂj,t)- (42)

b j:l

In these expressions, @;(r;, 04, p;) = ai(rs, 0, pi) + bi(re, 04, p1) where a;(ry, 0, py),
bi(ry, 0,, p;) are defined in Section 3.

To demonstrate the versatility of the approach, we take 11 assets, 20 state vari-
ables, and 10 sources of uncertainty (d = 10). The first fund is the market portfolio
of risky securities (its returns depend on (W;, W)). The next eight funds are pure
hedging funds: We assume that fund j is perfectly correlated with W;; risk,
j=2,...9 (i.e., pj r =0 for £<j). The bond fund hedges W; risk. We also assume a
symmetric structure for the state variables 0, p: For i = 2,...,d, each pair (0;, p;)
satisfies an identical NMRHEV-NMRCEV process as in the benchmark model
with DPR; for i =1 the market price of IR risk satisfies an NMRHEV process
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TableV
Stock, Bond, and Mutual Fund Demands in the Multiasset Model

This table reports the optimal shares invested in the stock market index (), a long-term bond
fund (7;), and a mutual fund (n5), in a model with 11 assets (10 risky assets and cash), 20 state
variables, and 10 sources of uncertainty. The state variables are the interest rate (IR), 10 market
prices of risk (MPR), and 9 dividend-price ratios (DPR). A symmetric structure is assumed:
Each pair of state variables (MPR, DPR) follows an identical bivariate process with nonlinear
mean reversion and hyperbolic elasticity of variance for the MPR and nonlinear mean reversion
with constant elasticity of variance for the DPR. The market price of IR risk satisfies a non-
linear mean-reverting process with constant elasticity of variance and without dividend effect.
For parameter values, we took the estimates in the corresponding benchmark models. The table
displays the portfolio behavior when risk aversion and the correlation coefficient p; between the
IR and the stock market index vary.

R correlation
—0.9000 —0.5000 0.0000 0.5000 0.9000
1 T 1.1470 0.5773 0.5000 0.5773 1.1470
7S 1.5323 0.7886 0.5000 0.2113 —0.5323
Ty 0.5000 0.5000 0.5000 0.5000 0.5000
2 g 0.5341 0.2707 0.2345 0.2718 0.5353
Ty 0.8062 0.4611 0.3252 0.1906 —0.1562
Ty 0.2338 0.2342 0.2339 0.2333 0.2343
3 T 0.3496 0.1762 0.1533 0.1770 0.3453
13 0.5832 0.3565 0.2673 0.1788 —0.0419
Ty 0.1517 0.1529 0.1537 0.1539 0.1522
4 T 0.2648 0.1289 0.1124 0.1298 0.2578
Ty 0.4780 0.3051 0.2386 0.1755 0.0036
Ty 0.1164 0.1153 0.1144 0.1140 0.1149

without dividend effect. For parameter values, we took the estimates in the cor-
responding benchmark models (with DPR for i = 2,...,d and without for i = 1).

TableV displays the portfolio behavior when risk aversion and the correlation
coefficient p; between the IR and the stock market index vary. Note that the de-
mand for the stock is convex with respect to correlation. This reflects the parti-
cular risk-return trade-off embedded in the demand for the market portfolio
(inversely related to the stock’s exposure to pure market risk, o11/1 — p?). The de-
mand is maximal when the correlation approaches +1: In the limit, the investor
attempts to extract benefits from the stock’s vanishing exposure to Wy and can
only do so by increasing the scale of his holdings in an unbounded manner. Natu-
rally, this behavior is strongest at lower levels of risk aversion.

The bond fund hedges against IR risk. When the demand for the market port-
folio increases, the exposure of the portfolio to IR risk increases as well, and this
prompts an increased demand for fund 1. With negative (positive) correlation,
this entails taking a positive (negative) position in the bond fund. Again, demand
explodes as correlation approaches +1, reflecting the behavior of the stock de-
mand. Other funds are held for risk-return trade-off as well as hedging purposes.
Since funds’ risks do not affect the IR or the market price of stock market risk
in this model, these hedging demands serve the sole purpose of hedging MPR
fluctuations.
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B. Asset Allocation in the New Economy (Four Asset Classes)

We now specialize our multiasset model to four asset classes: three risky funds
(N = 3) and cash (the riskless asset). The risky funds are a portfolio of “old-econ-
omy” stocks (S&P500), a portfolio of “new-economy” stocks (Nasdaq), and a port-
folio of long-term pure discount bonds. Old-economy stocks are comprised of
firms involved in traditional activities, such as manufacturing, industry, and ser-
vices. They typically pay dividends. New-economy stocks are identified with com-
munications, Internet, and biotechnology, among others. There are three
Brownian motions, four securities, and five state variables (one IR, three MPRs,
and one DPR) affecting the opportunity set.

The price of the bond portfolio Sy is given by (38). Old- and new-economy port-
folios prices, S; and Sy, follow the dynamics (39) with d = 3. In this model, W; is an
IR risk factor, W, is old-economy firms’ risk, and W3 represents new-economy risk
factors. The IR r satisfies (37). The MPRs (0,, 05, 05) and the DPR of old-economy
stocks p follow the correlated processes

d0i = (1c0: (0; — Oir) + wh; (e, i) + 15, (P, 0iz))dt + 69:(0:)dWy; 1=1,2,3, (43)

dp: = uy(pr)dt —p}/"adeu (44)

where . (r¢, 0;1) is defined in (25), 1, (r¢, 0;1) and p,(p,) are as in (31) and (32), and
09:(0;,) 1s given by (26). In the expression for g¢;(0;,), the term oy; = [0;1, 059, 0;3] 1s a
1 x 3 vector. The volatility of the DPR, 6,=[0,:1, 6,2, 03], is also 1 x 3. Thus, we al-
low for arbitrary correlations among MPRs and between the MPRs and the DPR.

The fractions of wealth invested in the stock funds (ry;, 75;) and the bond fund
(np;) have the structures discussed in Section VI.A, and the same general com-
ments apply. To get more insights about the portfolio properties, we calibrate
the model (see Appendix C) and compute the investment shares. Table VI displays
their behavior with respect to maturity when risk aversion equals 4. Two surpris-
ing properties are the negative holdings of long-term bonds and the decreasing
fraction invested in stocks when the horizon increases. For instance, with a hor-
izon of six years, 79 percent of wealth is in the S&P500, 11.7 percent in the Nasdaq,
and —12.2 percent in the bond portfolio; with a 10-year horizon, the respective
shares are 73.4 percent, 11.3 percent, and — 12.4 percent. Moreover, the investor
displays, in general, a preference for traditional “old-economy” stocks over more
risky “new-economy” stocks.

The negative demand for long-term bonds is prompted by hedging considera-
tions. While the mean-variance term and the intertemporal hedge are positive,
they are overwhelmed by the hedging demand induced by investments in the
S&P500 and the Nasdaq. For instance, with a horizon of six years, we have a
mean-variance demand of 36.8 percent, an intertemporal hedge of 2 percent,
and an induced hedge of — 51 percent.The sign of the induced hedge follows from
the negative association between interest rate risk and stock or bond returns.
Given the positive investments in the S&P500 and the Nasdaq, the correlation
structure prompts a position of the opposite sign in the bond portfolio. The size
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Table VI
NASDAQ, S&P500, and Bond Demands

This table reports the optimal shares invested in the S&P500, the NASDAQ), and a bond fund, in
a model with four asset classes and three sources of uncertainty. The demand for cash, the last
asset, is 100 percent minus the sum of the other demands. The state variables are the interest
rate (IR), the three market prices of risk (MPR) and the dividend price ratio of the S&P500
(DPR). The MPRs follow processes with nonlinear mean reversion and hyperbolic elasticity of
variance. The DPR and the IR follow mean-reverting constant elasticity of variance processes,
as in the benchmark model with DPR. The parameter values are reported in Appendix C. The
table displays the portfolio behavior for a coefficient of relative risk aversion of 4 and maturities
from 2 to 10 years.

Maturity
2 4 6 8 10
SP500 Holding 0.8296 0.8221 0.7901 0.7652 0.7345
MV 0.7332 0.7332 0.7332 0.7332 0.7332
Intertemporal Hedge 0.0679 0.0643 0.0333 0.0100 —0.0214
Induced hedge 0.0284 0.0244 0.0234 0.0219 0.0226
NASDAQ Holding 0.1411 0.1212 0.1166 0.1092 0.1127
MV 0.1940 0.1940 0.1940 0.1940 0.1940
Intertemporal hedge —0.0529 —0.0728 —0.0774 —0.0848 —0.0813
Long term  Holding —00648 —0.0799 —01220 —0.1681 —0.1239
Bonds MV 0.3683 0.3683 0.3683 0.3683 0.3683
Intertemporal hedge 0.1160 0.0831 0.0204 —0.0442 —0.0144
Induced hedge —0.5493 —0.5314 —0.5109 — 04922 — 04779

of this hedging demand is prompted by the large fraction of wealth invested in
the S&P500 and the Nasdagq.

The fact that the share invested in stocks goes down with the horizon goes
against the popular notion that “stocks are less risky in the long run” and, there-
fore, should be held more prominently in longer horizon portfolios. This surpris-
ing conclusion reflects the congruence of several effects. First, note that the MPR
hedge in the Nasdaq demand becomes more important (i.e., more negative) with
the horizon. This horizon impact on the hedge is typical: It parallels the hedging
behavior uncovered in the simpler models of prior sections. It contributes to a
reduction in the investment in new economy stocks. Second, note that the inter-
temporal hedge component of the S&P500 demand displays more intricate ef-
fects. This hedge is positive for short horizons, but decreases and eventually
becomes negative. The sign reversal is new in the context of models with constant
relative risk aversion and reflects the conflicting effects of Wy innovations on 60,
and on (0, 03) (i.e., 612 >0 and 699, 632 <0). The reduction of this hedge decreases
the demand for the S&P500. Finally, note that the induced hedging component in
the S&P500 demand decreases as well; this reflects the reduced exposure to old-
economy risks induced by the decreasing fraction of wealth invested in the Nas-
dag.

The Nasdaq demand is fueled by a positive mean-variance term (about 19 per-
cent with a six-year horizon), which is reduced by an intertemporal hedge (about
8 percent). This hedging demand is entirely motivated by fluctuations in the mar-
ket prices of risk 0 due to Nasdaq risk Ws. The size of this MPR hedge illustrates



A Monte Carlo Method for Optimal Portfolios 431

the fact that MPR fluctuations are important in a multiasset world (the MPR
hedge represents roughly — 66 percent of the fraction held when T' = 6).

The demand for the S&P500 has an important mean-variance term and more
modest hedging components. For a horizon of six years, the mean-variance term
1s 73.3 percent, the intertemporal hedge 3.3 percent, and the hedge induced by the
position in the Nasdaq about 2.3 percent. Interestingly, the position in the Nasdaq
prompts an increase in the demand for the S&P500. This is due to the negative
correlation, pg s = — 0.1274, between the Nasdaq and old-economy risk factor Ws.
Equally surprising is the fact that the intertemporal MPR hedge increases the
demand for the S&P500 (for horizons less than 10 years). This reflects, again, a
correlation effect: Here, it is negative correlation between S&P500 risk factors
(i.e., W,) and their MPR (0,), which is a source of the result.

VII. A Comparison of Methods in the Benchmark Model

The Monte Carlo approach entails the computation of expectations that
depend on the Malliavin derivatives of the state variables. In numerical imple-
mentations, the state variables and their Malliavin derivatives are simulated
using the Euler scheme, with or without transformation of the state variables.
An alternative approach, proposed by Brennan et al. (1997), computes the
portfolio using the Bellman equation for the value function of the problem.
In this section, we compare the two approaches and document the numerical ad-
vantages of our method. We perform this comparison in the benchmark model
with CRRA.

A. Three Competing Methods

We consider three approaches. The first one is the Monte Carlo approach using
Malliavin derivatives, which was described in Sections IT and III. To simplify the
notation, we refer to it by the acronym MCMD (Monte Carlo with Malliavin De-
rivatives).

The second is a PDE method based on the dynamic programming approach of
Merton (1971). For CRRA, the proportions invested are independent of wealth
and given by

o = %0’ +}%0'Y (45)
£f = 00" + (0o = DI = pr)f =0, (46)

where p =1 — % and f(7, -) = 1. This characterization of the portfolio, with a lin-
ear PDE for the function f, appears in Schroder and Skiadas (1999) and Liu
(2001)."" Tt simplifies the computational task and, therefore, biases the results in

"The approach in Brennan et al. (1997) is based on the nonlinear PDE for the function p,
defined by p=log f.
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favor of the PDE method. We take it as a basis for our comparison.”® In the
numerical implementation, the solution is computed using the method of
Finite Differences. We refer to this combination by PDEFD (PDE Finite
Differences).

The third approach is another Monte Carlo method recently proposed by Cvi-
tanic et al. (CGZ) (2003). It uses the fact that the portfolio is the limit of the covar-
iation"
w0, = lim

h—0 E, [é? T]

The procedure proposed by CGZ approximates the portfolio by fixing a discreti-
zation h. It then computes the conditional expectations on the right-hand side for
this chosen A.The procedure appears easy to implement, since it does not involve
Malliavin derivatives.?® But it is based on an approximation (because  is fixed),
and this will affect its convergence properties. We call this method MCC (Monte
Carlo Covariation).”!

(47)

8The link with Monte Carlo is easy to see, since the solution of (46) can be written as
f(t, Yy) = By[&) 7. Taking the Malliavin derivatives on both sides of this equation gives
Dif(t, Vi) = f,(t, V)oY (¢, i) = —f(t, Vi) (a(t, Ye) + b(¢, Y3)) and therefore (f,/f)o? = —(a+b),
where a, b are defined in (12) and (13). This shows that (45) and (7) are different representa-
tions of the same function.

¥ The optimal portfolio is the covariation between optimal wealth and the Brownian motion,
d[X, W], = m,X,0,dt. Thus, mjo, = X; ' limp_o 3 By (X — Xo)(Ween — Wy)] = limp—o 3 Eo[(Xirn/
X)) (Wien — Wy)). Formula (47) follows since X;1p/X; = (BEyn [0 7] /Eq[E) T})Xé;}%.

20The Monte Carlo Covariation method may be better suited to handle non-Markovian dy-
namics. However, it does not provide the IR- and MPR-hedge decomposition that MCMD pro-
vides.

2 Brandt et al. (2001) propose another simulation method in discrete time. Their procedure
involves three steps. The first step approximates the Bellman equation using a Taylor series
expansion around wealth growing at the riskless rate (a quartic expansion is suggested by
BGS). The optimal portfolio for this approximate problem satisfies a nonlinear polynomial
equation (first-order condition) whose coefficients are expectations of the unknown value
function and its derivatives. The second step uses a regression method in combination with
Monte Carlo simulation to estimate these coefficients. This step parallels the algorithm pro-
posed by Longstaff and Schwartz (2000) for the valuation of American-style options. The last
step computes the approximate optimal portfolio using an iterative procedure to solve the
nonlinear polynomial first-order condition. Since the estimate of the approximate portfolio
at a given point in time requires knowledge of future estimates of the approximate portfolio,
the algorithm is applied in a backward manner starting with the last period and moving re-
cursively through time. The overall methodology is somewhat similar to CGZ, in that it pro-
vides a numerical estimation of an approximation of the optimal portfolio. Implementation
raises challenging questions. First, for a fixed polynomial basis, the approximate solution will
not converge to the true portfolio policy when the size of the time interval decreases, but to
its projection on the selected basis (see Clément, Lamberton, and Protter (2002) for a proof of
this result for American-style options). When the residual of this projection is large, the meth-
od cannot give a precise approximation. Second, proper implementation requires auxiliary
tests to verify the optimality of the portfolio computed for the approximate problem. These
tests are required because the approximate objective function (being a polynomial) need not
be concave, and the first-order conditions (being polynomial equations) may have multiple
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Table VII
Convergence Rates for Numerical Methods Used to Compute Portfolio
Demands

The table compares the convergence rates of three numerical methods that are used to compute
the optimal portfolio in the benchmark model with constant relative risk aversion. Convergence
rates are expressed in terms of the discretization step (&), the number of discretization points in
space or simulations (M), and the number of discretization points in time (V). The competing
methods are the PDE (partial differential equations) finite difference methods, the Monte Carlo
covariation method (MCC), and the Monte Carlo Malliavin derivatives method (MCMD). The
table shows that the order of convergence for MCC and PDEFD depends on three terms, includ-
ing a term of order A for MCC and min; h]2 for PDEFD. This term appears because these methods
do not provide a numerical approximation of the true optimal portfolio, but rather a numerical
approximation of an approximation of the true policy. This term is absent from MCMD because
the true optimal portfolio is computed.

Estimator Convergence rates
PDE finite difference methods (PDEFD)
Explicit (PDEFD-E): (0] (%\, + m + min; hf)
Crank—Nicholson (PDEFD-CN): o <$ + —Lo + min; h]z)
K]
Monte Carlo covariation (MCC) Op (% + ﬁ + h)
Monte Carlo Malliavin derivatives (MCMD) Op (ﬁ + ﬁ)

B. Convergence Rate

Our first comparison between the three approaches involves their respective
convergence properties, which are summarized in Table VII.

For PDEFD methods, the space is discretized in M; points for state variable j
and time in N points; the computation of numerical derivatives uses a discretiza-
tion of length A, for the derivative relative to j. For Monte Carlo methods, M is the
number of replications and N the number of time points; for MCC, we also have h
for the time increment used to compute the approximation in (47). The table
shows that the order of convergence for MCC and PDEFD depends on three
terms, one of order A for MCC and minjh]2 for PDEFD. This term appears because
these methods do not provide a numerical approximation of the true optimal
portfolio, but rather a numerical approximation of a convergent approximation
of the true policy. This term is absent from MCMD, since the true optimal portfo-
lio is computed.

In the case of MCC, this additional term slows down the overall convergence
rate, since we draw random variables whose variance depends on the discretiza-
tion parameter h. This perturbation parameter must then be controlled jointly

roots. These verifications could add substantial computation time to the procedure. In addi-
tion, for wealth-dependent utility functions, their method solves the problem for a grid of va-
lues for wealth. This introduces another approximation and increases the computation time.
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with the choice of the number of Monte Carlo replications. Otherwise, the var-
iance of the estimator will explode. In contrast, this term does not affect the over-
all convergence rate of PDEFD methods, since both implicit and explicit methods
are already second order in space.

What about the other terms in the order of convergence? For PDEFD, these
terms appear because discretization is in time (V) and space (M;). For MC meth-
ods, we rely on a law of large numbers to approximate an expectation by an aver-
age over M replications. The second error is due to the fact that, in general, we
cannot sample from the true distribution of &; 7 but, instead, we must rely on a
numerical solution of the SDE based on a discretization scheme.

The denominators of the expressions in Table VII show that PDE methods con-
verge faster than MC methods. An important caveat is in order in that regard.
PDE methods converge globally at the given rate if and only if the boundary con-
ditions are correct. Unfortunately, the choice of appropriate boundary condi-
tions is a nontrivial issue. If the domain of state variables is unbounded, in
order to obtain a finite numerical algorithm, we must impose nonnatural bound-
aries and specify the unknown behavior of the function at those points. For ex-
ample, if the short rate is unbounded, we must specify some upper bound r,. Since
&, rdecreases in r, it makes sense to impose an absorbing Dirichlet condition
f(-, ry, -) =0. Unfortunately, this could induce a discontinuity in the function
and prevent attainability of the theoretical convergence rate.?? Alternatively, if
we impose a reflecting Newton boundary condition, say 0,f(-, r,, ) =0, and if
this condition is misspecified, we would not attain the theoretical convergence
rate either.

The main difference between the two Monte Carlo methods comes from the or-
der of convergence of the limiting distribution of the errors.? It is VM /N for
MCMD and MY3/N for MCC. This means that if we want to shorten the length of
asymptotic confidence intervals by half, we need only quadruple the number of
replications and double the number of discretization points in time using MCMD.
With MCC, we need eight times more replications and still must double the num-
ber of discretization points in time. Moreover, we must simultaneously shorten
the time lead for the increment of the Brownian motion by half. If 1/4 and/or N
are increased at a higher rate, the asymptotic variance explodes and so does the
length of asymptotic confidence intervals. On the other hand, if 1/4 and/or N are
increased at a lower rate, the second-order bias increases, which reduces the true
coverage probability of confidence intervals based on the normal distribution
with a given nominal size.

C. Efficiency

Another important aspect of the comparison is the efficiency of the method,
which can be measured by the amount of memory required and the number of
arithmetic calculations performed. The latter determines the speed of execution.

22See Heston and Zhou (2001) for more results along these lines.
2 For full details and expressions for the limit distributions, see DGR (2001).
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It is not the purpose of this paper to compare the methods in every detail. How-
ever, a few items are important to properly assess the candidates.

The computational requirements of the various methods are very different. For
PDE methods, a better rate of convergence may not result in less CPU time. For
example, the system matrix for Crank—Nicholson with three state variables needs
about 640 megabytes of memory.?* This requirement grows exponentially with
the dimension of the problem and quickly becomes an impediment in a realistic
portfolio problem with a large number of state variables. Explicit PDE methods
require far less memory than implicit methods, but they run into a stability pro-
blem, since the discretized equations are sensitive to small errors.

With MC methods, the addition of a new state variable increases the number of
operations required linearly, making them particularly suited for large multi-
variate problems. For MCMD, each state variable requires the simulation of a
Malliavin derivative with respect to each Brownian motion. Since MCC does
not require the simulation of any auxiliary process, it dominates in terms of com-
putation time. Unfortunately, it converges at a slower rate than MCMD, and this
worsens its efficiency properties.

The best way to gauge the relative performance of competing methods is to
compare them in a concrete experiment. We will choose a relatively small-dimen-
sion problem in terms of state variables, making it harder for MC methods. On the
other hand, we will compute a large number of portfolios, making it harder for
PDE methods.

D. Experimental Setting and Numerical Results

We now illustrate the performance of the various methods for our benchmark
model. We consider a mutual fund with 100 different types of clients who can be
classified in 10 investment horizon classes (1to 10 years) and 10 risk profiles (risk
aversions from 0.5 to 5.5). For each method, we compute portfolio estimates for
the 100 client configurations selected. Based on this empirical distribution, the
sample root mean square relative errors (RMSE) and the maximal absolute er-
rors (MAE) are recorded, and plotted against computation time. The experiment
is repeated for different combinations of M, N, and h described below (we consid-
er six combinations in the graphs). Errors are computed relative to a benchmark
calculated using MCMD with 1,000 discretization points per year and 3,000,000
replications. All computations are for initial values close to the long-term
means 0y = 0.1, ro= 0.06, and py = 0.03. The boundary conditions for the PDE
methods are as follows. For the Explicit method, we simply impose f(-,0.3) = 0;
for Crank—Nicholson, we require f,(-03)=0, (-, 0 =0, f,(-, 00 =0, fn(-, 0.2) =0,
f()( t, — 15) = 0, andf()()(' , 15) =0.

In the plots, Nis the number of discretization points in time per year and M the
number of replications (resp. discretization points in space) for Monte Carlo

24 This storage requirement can be avoided if, at each time step, we rebuild the matrix sys-
tem from scratch. But, doing so will considerably increase the computation time.
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(resp. PDE) methods. The following legend applies:

¢ Malliavin derivatives (MCMD): N'=10 2'~Yand M =1000 x 22¢ P

x ' Covariation (MCC): N =10 x 2171 M=100x%2%¢~D and h=0. 1/2“1

+% Explicit (PDEFD-E): N =10 x 2“1 and M = h=[My, M,, M,] =2x2'[1,1,1]

O® Crank-Nicholson (PDEFD-CN): N=2+i and M =h=[M,, M, M, =

@+i[1,1,1].

Figure 8 shows that, among all methods, MCC does worst, whereas MCMD
does best. This dominance occurs whether one uses MAE or RMSE for compari-
son. If we focus on MCC and MCMD, we see that the dominance of MCMD is
systematic and significant. For the same budget of computation time, errors pro-
duced by MCC are larger by a factor of 10 or more. For the case i = 5, this factor

reaches 100 for RMSE.
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Figure 8. Comparison of numerical methods. Efficiency plots: RMSE (root mean
square relative errors) versus CPU time (left panels), MAE (maximal absolute errors) ver-
sus CPU time (right panels). Top: R (risk aversion) = 0.5 to 5 and 7" (horizon) = 1to 10. Bot-
tom: R=55 and T 1 to 10. {% Malliavin derivatives (MCMD): N=10x2'"! and
M=1000 x 2%~V x: Covariation (MCC): N = 10x 271, M=100x 2%~V and h= 01/
2i=1 +% Explicit (PDEFD ExN=10x2" tand M=h= [MO,M My=2x271,1,1. O"
Crank Nicholson (PDEFD-CN): N = 2+i and M = h = [My, M,, M,)] = (2+l)[1 1,1].
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The comparison of MCMD and PDEFD-E shows that MCMD is more efficient
if the time discretization is sufficiently large N>10. PDEFD-E initially performs
poorly, since we are close to the region where it is unstable. Unfortunately, the
PDEFD-CN method is by design such that the convergence does not show in the
graph. Because of its memory requirement (see discussion above), the CPU time
explodes if we choose space discretizations with min {M,, M,, M,} >12, since we
have to rebuild the system matrix at each time step.

VIII. Conclusions

In this paper, we have developed a comprehensive approach for the calculation
of optimal portfolios in asset allocation problems with complete markets.The ma-
jor benefit of our method, which relies on Monte Carlo simulation, is its flexibil-
ity. Indeed, the approach permits (i) any finite number of state variables, (i1) any
diffusion process for the state variables, and (iii) any number of risky assets. It is
also valid for any preference relation in the von Neumann—Morgenstern class.
This flexibility provides a distinct advantage over alternative approaches to the
problem.

The paper has also derived a number of economic results that can be used as
guidelines for sound asset allocation rules. Naturally, the performance of these
rules will also depend on the empirical sophistication of the underlying model of
financial markets. Clearly, we do not suggest that the models investigated here
are adequate in that respect, although they appear more realistic that the speci-
fications examined in the prior literature. But the important point here is that
the approach that we have proposed offers great generality: It can be easily
adapted to address the asset allocation problem for a large class of financial mar-
ket models.

Appendix A: Proofs

ProoF oF THEOREM 1: Since the Ocone and Karatzas (1991) formula is the founda-
tion of the numerical approach in this paper, we sketch its derivation in the
course of this proof.

It follows, from Cox and Huang (1989) and Karatzas et al. (1987), that optimal
terminal wealth is given by X7 = I(yép) ' = max(I(yéy), 0), where I = [u/] "' is the
inverse marginal utility and y satisfies the static budget constraint
E[lrl(yén ] =x.

Thus, optimal wealth at time ¢ is &,X, = E,J[¢7X 7] = E[Erl(yép) 7). By Itos lem-
ma, the volatility of the left-hand side of this equation is —&,X;0, + £, X;m,0;. An
application of the Clark—Ocone formula (see Appendix D) shows that the volati-
lity of the right-hand side equals E; [Dt (éTI(yfTﬁ)]. Equating these two expres-
sions and solving for the optimal portfolio yields

ftXtTE; = sztHQUt_l + Et[Dt@TI(yfT)Jr)]Gt_l-
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The chain rule of Malliavin calculus for Lipschitz functions (Nualart (1995, pp.
30-31)) gives

Dy(ErI(yér)") = (Iér)" + yérI (yér)lipe=o)Dilr = Z(yér)Dicr,

where the random variable 17, is the indicator of the set I(y¢7) >0 and

T T
Dy =—¢r (e;+ / Dirods + / (dWs+esds)/Dtes> = 0(0,+ Hip).
t t

Combining all these elements leads to the Ocone and Karatzas (1991) portfolio
formula:

& Xomy, =8 X, — Byl Z(yér)])0(t, Y) a(t, Yt) Et[fTZ(yfT)Ht,T]U(t, Yt)71
= — E/[Er ()T (yEr)lrpye, =0)0(t, Yo) a(t, ;)
— Ey[&rZ(yEn)Hyr]o(t, V),

where we used ¢, X; = E;[¢71(yér) "] and the definition of Z(y¢y) to simplify the
first bracket.

When I(y) >0, we have — I'(y) = 1/[ — " (I(y))] (from the definition u'(I(y)) = y).
On the event I(yér) >0, the first-order condition for consumption optimization
states that y&ép = u'(I(y&éy)). It follows thatx.gif" type="gif">

—E[Er(yer) I (¥ér)Liyep) >o] = Et|:R(XT)XT1XT>O:|

where R(x) = — u”(x)x/u’(x) is the relative risk aversion of the investor. Similarly,
we can write

Z(yer) =1(yér)" + yérI (ver)liyey =0 = Xr [1 - R(XT)_I} 1x,>0-

Substituting these expressions in the portfolio formula and rearranging
gives

1 Xr R(X;)
R(X) [@TX R(Xr)

_E {étTX (1—R(XT) )1XT>0/ Dtrsds]at

U
T, =5 v~

1XT>0:| 9/ _1

Xr -1 T li
E; {ét,TYt(l—R(XT) )1XT>0/ (dWs—‘rQst) 'Dtes:|(7t_
t

Now note that the chain rule of Malliavin calculus gives

Dtes = 820(8, Ys)Dt Ys
Dirs = Oor(s, Ys)D, Y5 *

Furthermore (1) and Nualart (1995), Section 2.2, pp. 99-108 (see also Appendix D),
imply that D, Y; = (D1, Ys, ..., Dat Ys) solves the d systems (one for each of the d

(A1)
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Malliavin derivatives) of d stochastic integral equations

Dy Ys =Die Y, + /Dkt.“ v, Yv)dUJr/ Dkt(ZG v, YU)dVVJU>
t j=1
=a(t, Yt)+/ Aapt” (v, Yu)Dszodv+/ <26’26 v, Y,) Dth,)dW],)>
¢

:Ui(t, Yt) +/ aZ,MY(Uv Yz))DthI)dU +/ <Z 82‘7}/(07 Yv)dVVju> Dkt Yv
t t j=1

for k=1, ..., d. Writing these equations in differential form gives (11). The initial
condition limg_,; Dy, Yy = a{’,;(t, Y;) follows from the integral equation above.

REMARK A-1: The solution of the system of linear equations (11) could also be writ-
teninthe form D,Y; = o7 (¢, Y;)exp{ [ dL,}, where the d x d random variable dL,
is given by

d
dL, = |8 (v, Y,) ——Zaza v, Y,)(020) (v, Y)) |dv+ Y dh0) (v, Y,)dWj,

J=1 Jj=1

and exp{ fts dLU} is interpreted as the exponential of a matrix (i.e., the expression
for D;Y, is shorthand notation for the solution of dD,Y; = (dL, + 1d[L],)D, Y
subject to the boundary condition D;Y; = ¥ (¢, Y;), where [L] is the quadratic var-
iation process).

Proor oF proposiTION 2: Following Doss (1977), we consider a function
F [0, T)xR—R, such that &,F 1 Define the new state variable Z,=F(t, Y,).
Using 999 F = 05(1/6) = — O40/0> and Ito’s lemma implies

dz, = {Z - %aza + 81F] (t, Y)dt +dW,, Zy=F(0, Yy). (A2)

Since F has an inverse, denoted by G, we can write Y; = G(t, Z;). Substituting in
(A2) gives dZ, = m(t, Z;)dt+dW, where m(t, Z,) = [u/oc — 300 + 01 F|(t, G(t, Z;))
is the drift of (A2) evaluated at Y, = G(¢, Z,). Assumptions (1) and (i1) ensure that G
and m is continuously differentiable. Assumption (iii) ensures that Theorem 2.2.1
of Nualart (1995) can be applied to conclude that the process Zis in the domain of
the Malliavin derivative operator, that is, Z € D% Taking the Malliavin deriva-
tive on both sides of (A2) and using D, Y; = 9sG(s, Zs) D, Zs gives

dDZs = Oem(s, Zs)DiZsds = Oy [ - *820' + 0 ] (s, G(s, Z5))02G(s, Zs)D:Zsds,

subject to the boundary condition D;Z; = 1. Solving this linear SDE for D;Z;
and using the relations for derivatives of F and its inverse G produces the
result stated. W
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EXPRESSIONS FOR (21) IN THE BENCHMARK MODEL: Consider the case of 6, = 0. Differ-
entiation gives,

Doptg(x) = — Ko

O1op(x) =0 and 0hoy(x) = —-&(x)

1 o) (elx) | 1 Qo (55)
_ 1 op(x) (&x) _ V20l —Y10) 00X i+0u
oo (x) =5 e(x) — = ( +91+x) 0,70, 0 tx e

(1 - (01+()u) )

(corresponding expressions can be derived for D;r). W

Appendix B: Asymptotic Laws of State Variables Estimators

This appendix reports results from DGR (2001) on the asymptotic laws of esti-
mators of the state variables. Let Z, be the vector of state variables after the Doss
transformation. It satisfies dZ, = m(Z;)dt + Z . d W’ (see equation (A2) in the
univariate case). Using the Euler scheme gives an estimator Z of Z7 Our next
theorem characterizes the estimation error.

THEOREM B-1: The asymptotic law of the estimator of the state variables Z is given by
UtZITV‘ = N(Z} — Zr) = UZp, where

T
Ufp=—Qur / Q, ;0m(Z;)
t

;( (Z) dt—l—ZdW’)—i—\/—“ZdB] Zazkm

j=1 kll

withQ, , = = exp( [, Om(Z;)ds) and with [B;c 1,
tion independent of W.

4 ad x 1standard Brownian mo-

cees

Theorem B-1 provides an explicit expression for the asymptotic law of the esti-
mator and shows that the speed of convergence is of order 1/V. These results can
be contrasted with those obtained when state variables are estimated before
transformation. Applying a Euler scheme to estimate the solution of (1) gives
UY" = VN(YN - Y;) = UY, where

1 v d
UY =—-——=0 U/ Q ch]
t,v \/é 2 ] Z )

h,j=1

with

Qt,vexp</tv féz derZ/ 36 dW]>
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and where the processes [B™] B, jell
pendent of W,

In this case, the speed of convergence is 1/v/N. Theorem Bl illustrates the in-
crease in the speed of convergence achieved by using the Doss transformation. It
also shows that the limit law is different and involves an exponential of abounded
variation process instead of a stochastic integral. DGR (2001) provides additional
results for conditional expectations of functionals of state variables such as those
in the hedging terms a(t, Y;) and b(¢, Y;). The increased rate of convergence is im-
portant when computing estimators of these conditional expectations based on
an approximation of the dynamic evolution of the state variables.

) are standard Brownian motions inde-

,,,,,

Appendix C: Calibration of the Benchmark Model

We focus on a constrained version of our benchmark IR-MPR model (23) and
(24) with y;9 = 0.5, 0, = 0, = 1.5.To calibrate the model, we assume that the approx-
imate discrete-time process is the true time-series model.?” The econometric pro-
cedure described in this section is based on the maximization of the log-
likelihood of the following discrete-time model

(h)

) = rgf) + 1, (Fp — r;:l))(l + ¢y p(Th — r(h))2'7’) + ar_h(rgf))y*gtm, ro given (C1)

tm

_ 1.5+0
O =00+ 100 = 0, + b0y~ )15+ 0,) (1= (F25-0%) )

1540, \*\"™” .
+op(1.5 + th)0'5 (1 - (%) ) Uy, Oogiven,

(C2)

where 7, = rh, 6,5 = 6,h1 ), ¢, = ¢,h 7", and dg,p, = dgh, and {t,:n=0, ..., N}
is a partition of [0, 7. In our estimations, we consider a monthly frequency with
h=1/12.

Since the MPR, 6; = a;l(ut —r¢), is unobservable, it must be filtered from the
data. We assume that the stock volatility ¢ is constant. In other words, we esti-
mate the MPR from the conditional mean y, of the stock return series (taken as
the S&P500 index), assuming a simple AR(1) process for the conditional mean.
The estimation period is January 1965 to June 1996. Although in the continu-
ous-time model the same Brownian motion applies to r and 0 with a perfect nega-
tive correlation, we leave the correlation coefficient between ¢, and v, |
unconstrained in the estimation. We obtained the following results:
K, = 00027668, 7= 0.0063138x12, ¢, =37.008/122* 045432 \ —045432, o,=
0.154055 x 128 ~ 1™ and 4, =1.1741 for the parameters of the IR process, and

% Estimating the parameters of a continuous-time diffusion model based on a discrete-time
approximation of the likelihood function leads to a discretization bias (Lo (1988)). However,
for the monthly estimation of IR processes, Broze, Scaillet, and Zakoian (1995) use an indirect
estimation to correct for the bias and find that it is small for the mean-reversion k,, the mean
7, and the variance o, We, therefore, follow the simpler approach to calibrate the parameters.
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Ko = 0.85576, 0 = 0.048786, 6 = 2.9417, 0,= 1.5, 0, = 1.5, 719 = 0.5, 75,o = 2.8313, and
09 = 3.0708 for those of the MPR process.

To evaluate the impact of nonlinearities, we also calibrated the model

rl(:i)l = rgl) + KV(?h - I"gf)) + Or.h \/ rgf)gtml

01, = 0, +10(0 — 04,) + 0. n(Tr, — rgf)) + ogvy,,,, 0o given.
The parameter estimates obtained are k,=0.005, r = 0.005x12, o, = 0.03637,
K9 = 0.77706, 0 = 0.2675, oy = 0.2005, and Jy = 2.1667.

To assess the robustness of the results assuming a constant o, we used a
GARCH (1,1) model for the stock returns to construct the series for the MPR 0,
while keeping an AR(1) specification for the conditional mean of the stock re-
turns. The estimates are not changed much and lead to comparable hedging and
portfolio shares.

For the specification with dividends, the discrete-time model is (C1) for the IR
and

- 1.5+0
O =00, 100 = 0) + 370 = 1540, (1 (225 )
_ 1.5+0
+ap = - 40, (1- (20

i 15 0 0.5\ V20 .
+09(1.5+0,,)°° (1 - <;t”> ) Vy,.»  UOogiven,

Py =04 + o0 — PV + B nBr — D)) + 0 1 (1)) 78, Do given
for the MPR and DPR. Here 6,,, = 6, by, = bh, 0,5, = 6,h V), ¢ ) = ¢, h™27, 5,
= d,yh, and {t,: n=0,...,N} is a partition of [0, 7]. The estimated parameter values
are k,= 0007185, 7=0.00407x12, ¢, =54.45/122>03601 4 —=0.3601, y,= 0716,
o, =0.0146 x 12! 7976 1, =0.989, 6 = 0.119, 0,=1.5, 0, = 1.5, 719 = 0.5, 5. o = 0.659,
8p9 = 324712, 6,9 = —1746/12, 5= 01626, 1, = 0.020, p = 0.0032x12, ¢, = 20.93/
1227024y = 0.244, y, = 0.6315, and 6, = 0.005 x 12! ~ 6315,

We proceed similarly for the model with four asset classes from 1971 to 1999.
The parameter values are the following.

For the IR: «, = 0.00034, 7 = 0.00520x12, ¢, =17224.987/12%* 416} = (0.4116,
7, = 0.5664, g, = 000986 x 12! ~0-5664,

For the MPRs: x; =0.1219, ko= 0.5946, 15= 07483, 0; = 0.1562, 05 = 0.4251,
63 = 01669, 011 = 0[2 = gul = 0u2 = 15, 013 = 0u3 = 25, 51,- = — 27648/12, 52, =
139.00/12, &5, =176.76/12, d,, = —0.0372, Sy, =14.04, 33, = — 444, 01, = —0.2032,
012 = 000497, 013=0.0356, 09 = —01237, 099= —0.0306, Go5=0.0406, 04 =
— 01199, 635 = — 0493, 033 = 0402, y; 9, = 1.9, = V1.0, = 0.5, Py, = 1.2158, 75, =
0.5095, 754, = 0.6440.

For the DPR: «, = 0.005, p = 0.0332x12, ¢, =0, , =0, 6,0 = —0.00103 x 12! ~*?,
Gpz = 001011 x 12" 7% 55 = 0.003 x 12' ~%5, 3, = 0.5.
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For the volatility of prices and their correlations, we obtained: gy = 0.156,
po=0.37, 5, = 0229, p,; =0.32, p,o = — 0.1274, 5; = 0.106.

Appendix D: Elements of Malliavin Calculus for Finance

The Malliavin calculus is a calculus of variations for stochastic processes de-
fined on a Wiener space. It applies to random variables and stochastic processes
that depend on the trajectories of a Brownian motion, that is, Wiener functionals.
In many contexts, one needs to measure the effects of a small variation in the
trajectory of the underlying Brownian motion on this functional. Malliavin cal-
culus gives the necessary tools to perform this computation.

Let (¢4, ..., t,) be a partition of [0, 7] and let F be a random variable of
the form

F=fW,,...,W,),

where f is a continuously differentiable function. The random variable F'depends
on the Brownian motion W at a finite number of points along its sample path;
it 1s called a smooth Brownian functional.

The Malliavin derivative of F'is the change in F due to a change in the path of
W. Specifically, consider a time ¢ such that {; < ... <t _1<t<{,... <t, and suppose
that we perturbate W, to W,+¢ for all s>¢. The Malliavin derivative of F'at ¢, de-
noted by D, F, is defined as

DtFEaf(Wt” ceey Wtk—l’ Wtk+8; ceey th+8)
Ok e=0
:Zfi(tha RN Wtkv meey th)v
i=k

where f; is the derivative with respect to the i argument of f.
A simple example is that of a lognormal price process S7= Spexp(aT+0c W),
where o, o are constants. A direct application of the definition gives

0St = oSpexp(aT + o Wr) = aSr.

DSt =Fy-

In this case, Sy depends only on the Brownian motion at time 7. The Malliavin
derivative is then the derivative with respect to Wz This reflects the fact that a
perturbation of the path of the Brownian motion from ¢ onward affects Syonly
through the terminal value W

The definition above can be extended to random variables that depend on the
path of the Brownian motion over a continuous interval [0, 7. This extension
uses the fact that a path-dependent functional can be approximated by a
suitable sequence of smooth Brownian functionals. In essence, the Malliavin
derivative of the path-dependent functional is the limit of the Malliavin deriva-
tives of the smooth Brownian functionals in the approximating sequence.
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The space of random variables for which Malliavin derivatives are defined
is called D2.%

This extension enables us to define Malliavin derivatives of stochastic inte-
grals 1n a natural manner. For instance, consider the stochastic integral
F = fo t)dW;, where h(t) is a function of time. We have D, F = h(t), that is, the
Malhavm derlvatlve of Fat date ¢ is the volatility A(¢) of the stochastic integral at
t. It measures the sensitivity of the random variable F'to the Brownian innovation
at t.

For practical purposes, we need to be able to compute the Malliavin derivative
of a function of a path-dependent random variable. As in ordinary calculus, a
chain rule also applies in Malliavin calculus. Let F = (F, ..., F,) be a vector of
random variables in D2, and suppose that ¢ is a differentiable function of F with
bounded derivatives. Then,

~ 0

( )DF;.

In partlcular for the Riemann integral with path-dependent integrand F =
fo ds where x(-) is a progressively measurable bounded process, we obtain
DtF fz Dyx( §r)ds Similarly, for the stochast1c integral with path-dependent in-
tegrand F = [ x(s)dW,, we have D,F = ft Dix(s)dWs + x(t).

These formulas help us to identify the Malhavm derivative of a process that
satisfies a stochastic differential equation, as in our portfolio problem. Suppose
that a state variable Y, follows the diffusion process dY; = u(Y,)dt+a(Y,)dW,,
where Y; is given. Equivalently, we can write the process Y; in integral form as

t t
Y, = Y0+/ M(Ys)ds+/ o(Yy)dW,.
0 0

Using the results above, it is easy to see that the Malliavin derivative D; Y, satis-
fies
$ 0o

_ ® o
DtYS—DtY0+1 WDtYUdU-f— 87YDtY dW +G(Yt)

Since D; Y, = 0, the Malliavin derivative obeys the following linear SDE

ou(Ys) (D, do(Ys)
oY oY
subject to the initial condition lim;_.; D, Ys = 6(Y;). As for any stochastic differ-
ential equation, the solution (i.e., the Malliavin derivative) can be simulated by
Monte Carlo methods.
It is well known that martingales, in Brownian spaces, can be written as sums
of Brownian motions. This result is the martingale representation theorem. One

d(D,Y,) = Y,)ds + (D, Y,)dW,

26The Malliavin derivative is defined on the space D%2 which is the completion of the
set of smooth Brownian functionals with respect to the norm || F ||; 2= (E(Fz))l/ g

(B(STIpFPar) )
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benefit of Malliavin calculus is that it gives an explicit expression for the inte-
grand that appears in this representation formula, that is, it identifies the volati-
lity coefficient of the martingale. This is the Clark—Ocone formula, which states
that any random variable F' € D2 can be decomposed as

T
F:E(F)+/ E[D,F|F,)dW,,
0

where F; represents the information generated by the Brownian motion
W up to t.

Ocone and Karatzas (1991) extended this formula to processes that are martin-
gales under an equivalent measure (such as the risk-neutral measure) and used
the result to derive their portfolio formula. A full treatment of Malliavin calculus
can be found in Nualart (1995).
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